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Preface 

What this book is about 

This book is about information technology (IT) infrastructure architecture. 

Infrastructure refers to all the hardware and system software components 

required to run IT applications. And infrastructure architecture describes the 

overall design and evolution of that infrastructure. 

This book explains how infrastructure components work at the architectural 

level. This means that components are described in building blocks that are tied 

to specific infrastructure technologies. Decisions made at this level are 

architecturally relevant, which means that once decisions are made at the 

building block level, it is relatively difficult to change them later. For example, 

the decision to use a particular cabling infrastructure in a datacenter cannot be 

easily changed once the datacenter is in operation. 

This book does not provide the level of detail required by engineers, but rather 

describes the most important architectural building blocks and concepts.  

IT infrastructures are complex by nature and provide non-functional attributes 

such as performance, availability, and security to applications. This book 

describes each infrastructure building block and its specific performance, 

availability, and security concepts. 

Until now, there has been no single publication that describes the entire field of 

IT infrastructure. Books and papers exist on each part of IT infrastructure, such 

as networking, installing and managing operating systems, storage, and 

virtualization, but no publication has yet described IT infrastructure as a whole. 

This book aims to fill that gap. 
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Intended audience 

This book is intended for infrastructure architects and designers, software 

architects, systems managers, and IT managers. It can also be used in education, 

for example in a computer science class. This book is very suitable for 

beginners, as almost every term is explained, while for experts and professionals 

this book is more of a review and overview. 

Infrastructure architects and designers can use this book to learn more about 

infrastructure design that is not their core competency. For example, network 

designers will probably not learn anything new about networking, but they will 

probably learn a lot about all the other parts of the infrastructure, such as 

datacenters, storage, and servers. The same is true for other designers. 

Software architects build software that runs on infrastructure. Software 

architects who understand the challenges an infrastructure architect faces can 

optimize their software for certain infrastructure characteristics. Understanding 

infrastructure helps software architects build more reliable, faster, manageable, 

and secure applications. 

Systems managers learn to identify key architectural choices and principles in 

an infrastructure, as well as ways to update and change a running infrastructure 

without compromising the architecture as a whole.  

IT managers gain a complete view of IT infrastructures and IT architecture. 

This will help them work with system administrators and infrastructure 

architects to better understand their concerns. 

Students of computer science will find a wealth of information about IT 

infrastructures that will provide a solid foundation for their computer science 

studies. This book is used by a number of universities around the world as part 

of their IT architecture curricula. It is particularly suitable for courses based on 

the Association for Computing Machinery (ACM) IS 2020.3 curriculum. A 

reference matrix of the curriculum topics and the relevant sections in this book 

is provided in the appendix IS 2020.3 Curriculum reference matrix. 

Some basic IT knowledge is needed to read this book, but the reader is 

introduced to each topic in small steps.  
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Note to the fourth edition 

In the fourth edition of this book, a number of corrections have been made, some 

terminology has been clarified, and several typographical and syntax errors have 

been corrected. In addition, the following changes have been made: 

• The content has been updated to reflect the new Association for 

Computing Machinery (ACM) IS 2020.3 Curriculum - Competency 

Area - IT Infrastructure. 

• A new chapter on cloud computing has been added, and cloud-related 

content has been added throughout the rest of the book. 

• A new chapter on documenting infrastructures was added. 

• New technologies such as serverless computing, edge computing and 

quantum computing have been added. 

• The security chapter has been rewritten and restructured to better 

reflect infrastructure-related security concerns. 

• The Infrastructure as Code chapter has been rewritten to reflect 

current working practices and a chapter on automation has been 

added as this has become more important over the years. 

• The chapter on Purchasing Infrastructure and Services has been 

removed as it was too general and not specific to infrastructure. The 

chapter was mandatory for the IS 2010.4 syllabus, but has been 

removed from the IS 2020.3 syllabus. 

• The networking chapter has been expanded to include POP, SMTP, 

FTP, HTTP, and HTTPS protocols. This is a requirement from the IS 

2020.3 syllabus. 

• An appendix has been added that describes a high-level checklist that 

can be used to ask the right questions when learning about an existing 

infrastructure in the field. 

• More than 100 edits were made throughout the book to clarify and 

update content, and to remove outdated content. 

• Finally, as technology has advanced in recent years, the book has 

been updated to include the most current information. 

  



 

21 

About the Author 

Sjaak Laan (1964) leads CGI's Cloud and Infrastructure practice in the 

Netherlands. After studying electronics in the 1980s, he started his career in the 

IT industry at a PC repair company, where he repaired thousands of IBM PS/2 

system boards at chip level. He later became an IT infrastructure specialist in 

networking, storage and computing. He now has more than 30 years of IT 

experience.  

Mr. Laan joined CGI in 2000 and is now a Director Consulting Expert in the 

government, financial, and energy markets. He is an expert in cloud, 

infrastructure and security and has extensive knowledge of systems 

management processes and integrations.  

As an architect, he is certified by The Open Group as a Master IT Architect and 

is TOGAF certified. In the area of cloud, he is an AWS Certified Solution 

Architect and Certified Azure Solutions Architect Expert. His information 

security knowledge is supported by his CISSP and CRISC certifications.  

Sjaak Laan has been writing about cloud and infrastructure on www.sjaaklaan.nl 

since 2006, has a number of publications to his name and regularly gives 

trainings and presentations. Mr. Laan usually works for clients as a lead architect 

or consultant on complex projects. 





23 

PART I 
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INTRODUCTION TO IT 
INFRASTRUCTURE 

 

 

 

Infrastructure is much more important than architecture. 

Rem Koolhaas, one of the world's most famous architects 
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1.1 Introduction 

In the early decades of IT development, most infrastructures were relatively 

simple. As applications grew in functionality and complexity, hardware 

basically just got faster. In recent years, IT infrastructures have become more 

complex due to the rapid development and deployment of new types of 

applications, such as big data, artificial intelligence (AI), machine learning, the 

Internet of Things (IoT), and cloud computing. These applications require new 

and more sophisticated infrastructure services that are secure, highly scalable, 

and available 24/7. 

1.2 What is IT infrastructure? 

IT infrastructure has been around for a long time. But surprisingly, there does 

not seem to be a universally accepted definition of IT infrastructure. I have 

found that many people are confused by the term IT infrastructure, and a clear 

definition would help them understand what IT infrastructure is and is not. 

In literature, many definitions of IT infrastructure can be found. Some of them 

are: 

• IT infrastructure is defined broadly as a set of information technology 

(IT) components that are the foundation of an IT service; typically 

1  
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physical components (computer and networking hardware and 

facilities), but also various software and network components. 

Wikipedia 

• All of the hardware, software, networks, facilities, etc., that are 

required to develop, test, deliver, monitor, control, or support IT 

services. The term IT Infrastructure includes all of the Information 

Technology but not the associated people, processes and 

documentation.  

ITILv3. 

• IT infrastructure refers to the composite hardware, software, network 

resources and services required for the existence, operation and 

management of an enterprise IT environment. IT infrastructure allows 

an organization to deliver IT solutions and services to its employees, 

partners and/or customers and is usually internal to an organization 

and deployed within owned facilities. 

Techopedia 

• IT infrastructure is the system of hardware, software, facilities and 

service components that support the delivery of business systems and 

IT-enabled processes. 

Gartner 

• IT infrastructure refers to the combined components needed for the 

operation and management of enterprise IT services and IT 

environments. 

IBM 

• IT infrastructure are the components required to operate and manage 

enterprise IT environments. IT infrastructure can be deployed within 

a cloud computing system, or within an organization's own facilities. 

These components include hardware, software, networking 

components, an operating system (OS), and data storage, all of which 

are used to deliver IT services and solutions. 

Red Hat 

Based on these definitions, the term infrastructure may seem a bit arbitrary. Let's 

try to clear things up.  

The word infrastructure comes from the words infra (Latin for "underneath") 

and structure. It encompasses all the components that are "underneath" the 

structure, where the structure may be a city, a house, or an information system. 

In the physical world, infrastructure often refers to public utilities such as water 

pipes, power lines, gas pipes, sewers, and telephone lines – components that 

literally lie beneath the structure of a city. 
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Figure 1: Views on IT infrastructure 

For most people, infrastructure is invisible and taken for granted. When a 

business analyst describes business processes, the information used in the 

process is very important. How that information is managed by IT systems is 

"below the surface" to the business analyst. They think of IT systems as 

infrastructure.  

For users of IT systems, applications are important because they use them every 

day, but how they are implemented or where they are physically located is 

invisible (below the surface) to them and is therefore considered infrastructure.  

For systems managers, the building that houses their servers and the utility 

company that provides the power are considered infrastructure.  

So what infrastructure is depends on who you ask and their point of view. 

The scope of infrastructure as used in this book is described in more detail in 

chapter 2. 

1.3 What is IT architecture? 

Most of today's infrastructure landscapes are the result of a history of application 

implementation projects that brought in their own specialized hardware and 

infrastructure components. Mergers and acquisitions have made matters worse, 

leaving many organizations with multiple sets of the same infrastructure 

services that are difficult to interconnect, let alone integrate and consolidate. 

Organizations benefit from infrastructure architecture when they want to be 

more flexible and agile because a solid, scalable, and modular infrastructure 

provides a solid foundation for agile adaptations. The market demands a level 

of agility that can no longer be supported by infrastructures that are inconsistent 

and difficult to scale. We need infrastructures built with standardized, modular 
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components. And to make infrastructures consistent and aligned with business 

needs, architecture is critical. 

Architecture is the philosophy that underlies a system and defines its purpose, 

intent, and structure. Different areas of architecture can be defined, including 

business architecture, enterprise architecture, data architecture, application 

architecture, and infrastructure architecture. Each of these areas has certain 

unique characteristics, but at their most basic level, they all aim to map IT 

solutions to business value.  

Architecture is needed to govern an infrastructure as it is designed, as it is used, 

and as it is changed. We can broadly categorize architects into three groups: 

enterprise architects, domain architects, and solution architects, each with their 

own role. 

1.3.1 Solution architects 

Solution architects create IT solutions, usually as a member of a project team. 

A solution architect is finished when the project is complete. Solution architects 

are the technical conscience and authority of a project, are responsible for 

architectural decisions in the project, and work closely with the project manager.  

Where the project manager manages the process of a project, the solution 

architect manages the technical solution of the project, based on business and 

technical requirements. 

1.3.2 Domain architects 

Domain architects are experts on a particular business or technology topic. 

Because solution architects cannot always be fully knowledgeable about all 

technological details or specific business domain issues, domain architects often 

assist solution architects on projects. Domain architects also support enterprise 

architects because they are aware of the latest developments in their field and 

can inform enterprise architects about new technologies and roadmaps. 

Examples of domain architects are cloud architects, network architects, and 

VMware architects.  

Domain architects most often work for infrastructure or software vendors, where 

they help customers implement the vendor's technologies. 

1.3.3 Enterprise architects 

Enterprise architects continuously align an organization's entire IT landscape 

with the business activities of the organization. Using a structured approach, 

enterprise architects enable transformations of the IT landscape (including the 
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IT infrastructure). Therefore, an enterprise architect is never finished (unlike the 

solution architect in a project, who is finished when the project is finished).  

Enterprise architects typically work closely with the CIO and business units to 

align the needs of the business with the current and future IT landscape. 

Enterprise architects build bridges and act as advisors to the business and IT. 
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2.1 IT building blocks 

The definition of infrastructure as used in this book is based on the building 

blocks in the model as shown in Figure 2. In this model, processes consume 

information, and that information is stored and managed by applications. 

Applications require application platforms and infrastructure to run. All of this 

is managed by different categories of systems management. 

2  
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Figure 2: The infrastructure model 

A model is always a simplified version of reality, useful to explain a certain 

point; not covering all details. Therefore, the infrastructure model is not perfect. 

As George E. P. Box once said: “Essentially, all models are wrong, but some 

are useful.”1 

The following sections provide a high-level description of the building blocks 

in the infrastructure model. 
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2.2 Processes / Information 

building block 

 

Figure 3: Processes / Information building block 

Organizations implement business processes to fulfil their mission and vision. 

These processes are organization specific – they are the main differentiators 

between organizations. As an example, some business processes in an insurance 

company could be claim registration, claim payment, and create invoice.  

Business processes create and use information. In our example, information 

could be the claim’s date or the number of dollars on an invoice. Information is 

typically entered, stored and processed using applications.  

Functional management is the category of systems management that ensures the 

system is configured to perform the required business functions. 
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2.3 Applications building block 

 

Figure 4: Applications building block 

The Applications building block includes several types of applications based on 

the following characteristics: 

• Usage: Applications can be single-user or multi-user. A single-user 

application typically runs on end-user devices such as PCs and 

laptops. Examples include web browsers, word processors, and email 

clients. Examples of multi-user applications include mail servers, 

portals, collaboration tools, and instant messaging servers. 

• Source: Applications can be purchased as commercial off-the-shelf 

(COTS) products or developed as custom software.  

•  Architecture: Applications can be designed as standalone 

applications or as multi-tier applications. A multi-tier application 

consists of a number of layers, such as a JavaScript application in a 

browser that communicates with an on-premises web server, which 

communicates with an application server, which communicates with a 

database. 

•  Timeliness: Interactive applications respond to user actions, such as 

mouse clicks. They typically respond in the range of 100 to 300 ms.  

Real-time systems, such as Supervisory Control And Data 
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Acquisition (SCADA) systems, are used in manufacturing, logistics, 

or other environments where timeliness is critical. These systems 

must respond in less than 10 ms. At the other end of the spectrum are 

batch-based systems that process data for hours at a time.  

Each of these types of applications requires a different type of underlying 

infrastructure. 

Applications management is responsible for the configuration and technical 

operations of the applications. 

2.4 Application Platform building 
block 

 

Figure 5: Application Platform building block 

Most applications need some additional services, known as application 

platforms, that enable them to work. We can identify the following services as 

part of the application platform building block: 

• Application servers provide services to applications. Examples are 

Java or .Net application servers and frameworks like IBM 

WebSphere, Apache Tomcat, and Red Hat JBoss. 
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• Container platforms like Kubernetes, Azure Container Instances, 

and Amazon Elastic Container Service, that run docker containers. 

• Connectivity entails Enterprise Service Buses (ESBs) like Microsoft 

BizTalk, the TIBCO Service Bus, IBM MQ, and SAP NetWeaver PI. 

• Databases, also known as database management systems (DBMSs), 

provide a way to store and retrieve structured data. Examples are 

Oracle RDBMS, IBM DB2, Microsoft SQL Server, PostgreSQL, 

MySQL, Apache CouchDB, and MongoDB.  

Application platforms are typically managed by systems managers specialized 

in the specific technology. 

2.5 Infrastructure building blocks 

 

Figure 6: Infrastructure building block 

This book uses the selection of building blocks as depicted in Figure 6 to 

describe the infrastructure building blocks and concepts – the scope of this book. 

The following infrastructure building blocks are in scope: 
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• End User Devices are the devices used by end users to work with 

applications, like PCs, laptops, thin clients, mobile devices, and 

printers. 

• Operating Systems are collections of programs that manage a 

computer’s internal workings: its memory, processors, devices, and 

file system. 

• Compute are the physical and virtual computers in the datacenter, 

also known as servers. 

• Storage are systems that store data. They include hard disks, tapes, 

Direct Attached Storage (DAS), Network Attached Storage (NAS), 

and Storage Area Networks (SANs). 

• Networking is used to connect all infrastructure components. This 

building block includes routers, switches, firewalls, WANs (wide area 

networks), local area networks (LANs), internet access, and VPNs 

(Virtual Private Network), and (on the network application level) 

networking services like DNS, DHCP, and time services, necessary 

for the infrastructure to work properly. 

• Datacenters are locations that host most IT infrastructure hardware. 

They include facilities like uninterruptible power supplies (UPSs), 

Heating, Ventilation, and Air Conditioning (HVAC), computer racks, 

and physical security measures. 

Please note that these building blocks are not per definition hierarchically 

related. For instance, servers need both networking and storage, and both are 

equally important.  

Infrastructure management includes processes like ITIL and DevOps, and tools 

for monitoring, backup, and logging. 
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2.6 Non-Functional attributes 

 

Figure 7: Non-Functional attributes 

An IT system does not only provide functionality to users; functionality is 

supported by non-functional attributes. Non-functional attributes result from the 

configuration of all IT system components, both at the infrastructure level and 

above. 

Although many other non-functional attributes are defined, as described in 

chapter 4, availability, performance, and security are almost always the essential 

ones in IT infrastructure architectures (Figure 7). 
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In recent years, we have seen the widespread adoption of cloud computing. 

Cloud computing can be seen as one of the most important paradigm shifts in 

computing in recent years. Many organizations now have a cloud-first strategy 

and are taking steps to move applications from their own on-premises 

datacenters to the cloud managed by cloudproviders.  

 

The term cloud is not new. In 1997, Ramnath Chellappa of the University of 

Texas already stated:  

 

Computing has evolved from a mainframe-based structure to a network-based 

architecture. While many terms have appeared to describe these new forms, 

the advent of electronic commerce has led to the emergence of 'cloud 

computing‘. 

 

While there are many public cloud service providers today, the three largest are 

Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform 

(GCP). Together, these three have 66% of the market share and have a large 

number of datacenters around the world. Figure 8 shows when each of these 

cloud providers started.  
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Figure 8: Cloud time line 

The three major cloud providers offer similar services, but sometimes under 

different names. For instance, a virtual machine in Azure is just called a virtual 

machine, but in GCP it is called a Compute Engine and in AWS it is called an 

EC2 instance.  

While cloud computing can be seen as the new infrastructure, many 

organizations will be using on-premises infrastructure for many years to come. 

Migrating a complex application landscape to a cloud provider is no simple task 

and can take years. And maybe an organization is not allowed to take all its 

applications to the cloud. In many cases, there will be a hybrid situation, with 

part of the infrastructure on-premises and another part in one or more clouds.  

Please be aware that the cloud is just a number of datacenters that are still filled 

with hardware – compute, networking and storage. Therefore, it is good to 

understand infrastructure building blocks and principles even when moving to 

the cloud,  

3.1 Cloud definition 

The most accepted definition of cloud computing is that of the National Institute 

of Standards and Technology (NIST)2: 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable computing resources(e.g., 

networks, servers, storage, applications, and services) that can be rapidly 

provisioned and released with minimal management effort or service 

provider interaction.. 

It is important to realize that cloud computing is not about technology; it is an 

outsourcing business model. It enables organizations to cut cost while at the 

same time focusing on their primary business – they should focus on running 

their business instead of running a mail server. 

Clouds are composed of five essential characteristics, four deployment models, 

and three service models. 
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3.2 Cloud characteristics 

Essential cloud characteristics are: 

• On demand self-service – As a result of optimal automation and 

orchestration, minimal systems management effort is needed to 

deploy systems or applications in a cloud environment. In most cases, 

end uses can configure, deploy, start and stop systems or applications 

on demand. 

• Rapid elasticity – A cloud is able to quickly scale-up and scale-down 

resources. When temporarily more processing power or storage is 

needed, for instance as a result of a high-exposure business marketing 

campaign, a cloud can scale-up very quickly on demand. When 

demand decreases, cloud resources can rapidly scale down, leading to 

elasticity of resources.  

• Resource pooling – Instead of providing each application with a 

fixed amount of processing power and storage, cloud computing 

provides applications with resources from a shared pool. This is 

typically implemented using virtualization technologies.  

• Measured service – In a cloud environment the actual resource usage 

is measured and billed. There are no capital expenses, only 

operational expenses. This in contrast with the investments needed to 

build a traditional infrastructure. 

• Broad network access – Capabilities are available over the network 

and accessed through standard mechanisms.  

 

Be aware that when using public cloud based solutions, the internet connection 

becomes a Single Point of Failure. Internet availability and internet 

performance becomes critical and redundant connectivity is therefore key. 

 

3.3 Cloud deployment models 

A cloud can be implemented in one of four deployment models. 

• A public cloud deployment is delivered by a cloud service provider, 

is accessible through the internet, and available to the general public. 

Because of their large customer base, public clouds largely benefit 

from economies of scale.  
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• A private cloud is operated solely for a single organization, whether 

managed internally or by a third-party, and hosted either on premises 

or external. It extensively uses virtualization and standardization to 

bring down systems management cost and staff. 

• A community cloud is much like a private cloud, but shared with a 

community of organizations that have shared concerns (like 

compliance considerations). It may be owned, managed, and operated 

by one or more of the organizations in the community, a third party, 

or some combination, and it may exist on or off premises. 

• In a hybrid cloud deployment, a service or application is provided by 

a combination of a public cloud, and a community cloud and/or a 

private cloud. This enables running generic services (like email 

servers) in the public cloud while hosting specialized services (like a 

business specific application) in the private or community cloud.  

3.4 Cloud service models 

Clouds can be delivered in one of three service models: 

• Software-as-a-Service (SaaS) delivers full applications that can be 

used by business users, and need little or no configuration. Examples 

are Microsoft Office365, LinkedIn, Facebook, Twitter, and 

Salesforce.com. 

• Platform-as-a-Service (PaaS) delivers a scalable, high available, 

open programming platform that can be used by developers to build 

bespoke applications that run on the PaaS platform. Examples are 

Microsoft Azure Cloud Service and Google App Engine. 

• Infrastructure-as-a-Service (IaaS) delivers (virtual) machines, 

networking, and storage. The user needs to install and maintain the 

operating systems and the layers above that. Examples are Amazon 

Elastic Cloud (EC2 and S3) and Microsoft Azure IaaS. 

The following figure shows the responsibility of the cloud provider for each 

service model. 
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Figure 9: Cloud provider responsibilities 

In the context of this book, IaaS is the most relevant service model. 

When we combine both deployment and service models, we get the following 

picture. 
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Figure 10: Cloud models 

Because of the scope of this book, the next section describes Infrastructure as s 

Service in more detail. 

3.5 Infrastructure as a Service 
(IaaS) 

Infrastructure as a Service provides virtual machines, virtualized storage, 

virtualized networking and the systems management tools to manage them. IaaS 

can be configured using a graphical user interface (GUI), a command line 

interface (CLI), or application programming interfaces (APIs). 

IaaS is typically based on cheap commodity white label hardware. The 

philosophy is to keep the cost down by allowing the hardware to fail every now 

and then. Failed components are either replaced or simply removed from the 

pool of available resources. 

IaaS provides simple, highly standardized building blocks to applications. It 

does not provide high availability, guaranteed performance or extensive security 

controls. Consequently, applications running on IaaS should be robust to allow 

for failing hardware and should be horizontally scalable to increase 

performance. 

In order to use IaaS, users must create and start a new server, and then install an 

operating system and their applications. Since the cloud provider only provides 

basic services, like billing and monitoring, the user is responsible for patching 

and maintaining the operating systems and application software. 
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Not all operating systems and applications can be used in an IaaS cloud; some 

software licenses prohibit the use of a fully scalable, virtual environment like 

IaaS, where it is impossible to know in advance on which machines software 

will run. 

3.6 Edge computing 

The goal of edge computing is to bring computing power and data storage closer 

to where it is needed, rather than relying on a cloud or on-premises datacenter. 

In edge computing, compute and storage take place on devices at the edge of the 

network, such as routers, gateways, switches, and sensors. 

Edge computing can be a viable option where low latency, high bandwidth, and 

real-time processing are critical. For example, in the case of autonomous 

vehicles, real-time decision making is critical for safety. In this scenario, edge 

computing can enable the vehicle to process data and make decisions locally, 

rather than sending all sensor data to a centralized datacenter. 

Edge computing is also gaining popularity in Internet of Things (IoT) 

applications, where a large number of devices generate data that must be 

processed in real time. By using edge computing, organizations can reduce the 

amount of data that needs to be sent to the cloud, which can reduce costs and 

improve performance. 
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It's hardware that makes a machine fast. It's software that makes a fast 

machine slow. 

Craig Bruce 
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4.1 Introduction 

IT infrastructures provide services to applications. Some of these infrastructure 

services can be well defined, like providing disk space, or routing network 

messages. Non-functional attributes, on the other hand, describe the qualitative 

behavior of a system, rather than specific functionalities. Some examples of 

non-functional attributes are scalability, reliability, stability, testability, and 

recoverability. But in my experience, the three most important non-functional 

attributes for IT infrastructures are security, performance, and availability. 

Therefore, for each topic described in this book, these three non-functionals 

attributes are explicitly addressed.  

Non-functional attributes are very important for the successful implementation 

and use of an IT infrastructure, but in projects, they rarely get the same attention 

as the functional services. 

Not everybody is aware of the value of pursuing non-functional attributes. The 

name suggests they have no function. But of course, these attributes do have a 

function in the business process, and usually a fairly large one. For instance, 

when the infrastructure of a corporate website is not performing well, the 

visitors of the website will leave, which has a direct financial impact on the 

business. When credit card transactions are not stored in a secure way in the 

infrastructure, and as a result leak to hackers, the organization that stored the 

credit card data will have a lot of explaining to do to their customers. 
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So, non-functional attributes are very functional indeed, but they are not directly 

related to the primary functionalities of a system. Instead of the term non-

functional requirement, it would be much better to use the term quality attributes 

or implicit requirements. Although these terms much better reflect the nature 

and importance of, for example, performance, security, and availability, the term 

non-functional requirement (as expressed in non-functional requirements or 

NFRs) is more commonly used and widely known. Therefore, in this book I 

keep on using the term non-functional attribute, although I do realize that the 

term could be misleading. 

While architects and certainly infrastructure specialists are usually very aware 

of the importance of non-functional attributes of their infrastructure, many other 

stakeholders may not have the same feelings about it. Users normally think of 

functionalities, while non-functional attributes are considered a hygiene factor 

and taken for granted (“Of course, the system must perform well”). Users of 

systems most of the time don’t state non-functional attributes explicitly, but they 

do have expectations about them.  

An example is the functionality of a car.  

 

A car has to bring you from A to B, but many quality attributes are taken for 

granted.  

For instance, the car has to be safe to drive in (leading to the implementation of 

anti-lock brakes, air bags, and safety belts) and reliable (the car should not 

break down every day), and the car must adhere to certain industry standards 

(the gas pedal must be the right-most pedal). 

All of these extras cost money and might complicate the design, construction, 

and maintenance of the car. While all clients have these non-functional 

requirements, they are almost never expressed as such when people are 

ordering a new car. 

4.2 Non-functional Requirements 

It is the IT architect or requirements engineer’s job to find implicit requirements 

on non-functional requirements. This can be very hard, since what is obvious or 

taken for granted by customers or end users of a system is not always obvious 

to the designers and builders of that system. Not to mention the non-functional 

requirements of other stakeholders, such as the existence of service windows or 

monitoring capabilities, which are important requirements for systems 

managers.  
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SKIPPED TEXT 

 

4.2.1 MTBF and MTTR 

The factors involved in calculating availability are Mean Time Between Failures 

(MTBF), which is the average time that passes between failures, and Mean Time 

To Repair (MTTR), also known as Mean Time To Recover, which is the time it 

takes to recover from a failure.  

 

Figure 12: MTBF and MTTR 

The term "mean" means that the numbers expressed by MTBF and MTTR are 

statistically calculated values. 

4.2.1.1 Mean Time Between Failures (MTBF) 

The MTBF is expressed in hours (how many hours will the component or 

service work without failure). Some typical MTBF figures are shown in Table 

3. 

 

Component MTBF (hours) 

Hard disk  750,000 

Power supply 100,000 

Fan 100,000 

Ethernet Network Switch  350,000 

RAM  1,000,000 

Table 3: MTBF levels 

It is important to understand how these numbers are calculated. No manufacturer 

can test if a hard disk will continue to work without failing for 750,000 hours (= 

85 years). Instead, manufacturers run tests on large batches of components. In 

case of for instance hard disks, 1000 disks van be tested for 3 months. If in that 

period of time five disks fail, the MTBF is calculated as follows: 
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The test time is 3 months. One year has four of those periods. So, if the test 

would have lasted one year, 4 × 5 = 20 disks would have failed.  

In one year, the disks would have run in total: 

1000 disks × 365 × 24 = 8,760,000 running hours.  

This means that the MTBF =
8,760,000 ℎ𝑜𝑢𝑟𝑠

20 𝑓𝑎𝑖𝑙𝑒𝑑 𝑑𝑟𝑖𝑣𝑒𝑠
= 438,000 hours/failure. 

So, actually MTBF only says something about the chance of failure in the first 

months of use. It is an extrapolated value for the probable downtime of a disk. 

It would be better to specify the annual failure rate instead (in our example, 2% 

of all disks will fail in the first year), but that is not very good advertising.  

4.2.1.2 Mean Time To Repair (MTTR) 

When a component breaks, it needs to be repaired. Usually the repair time 

(expressed as Mean Time To Repair – MTTR) is kept low by having a service 

contract with the supplier of the component. Sometimes spare parts are kept on-

site to lower the MTTR (making MTTR more like Mean Time To Replace). 

Typically, a faulty component is not repaired immediately. Some examples of 

what might be needed for to complete repairs are: 

• Notification of the fault (time before seeing an alarm message) 

• Processing the alarm 

• Finding the root cause of the error 

• Looking up repair information 

• Getting spare components from storage 

• Having technician come to the datacenter with the spare component 

• Physically repairing the fault 

• Restarting and testing the component 

Instead of these manual actions, the best way to keep the MTTR low is to 

introduce automated redundancy and failover, as discussed in sections 5.4.1 and 

5.4.2. 

4.2.2 Some calculation examples 

Decreasing MTTR and increasing MTBF both increase availability. Dividing 

MTBF by the sum of MTBF and MTTR results in the availability expressed as 

a percentage: Availability =
MTBF

(MTBF+MTTR)
× 100%. 

For example: 
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A power supply's MTBF is 150,000 hours. This means that on average this 

power supply fails once every 150,000 hours (= once per 17 years). If the time 

to repair the power supply is 8 hours, the availability can be calculated as 

follows: Availability =
150,000 hours

(150,000 hours+8 hours)
× 100% =  99.99466 % 

This means that because of the repair time alone this component can never reach 

an average availability of 99.999%! To reach five nines of availability the repair 

time should be as low as 90 minutes for this component. Note that if a downtime 

of 99.999% is acceptable per year (and not over the total lifetime of the 

component), the repair time must be lower than 6 minutes! 

As system complexity increases, usually availability decreases. When a failure 

of any one part in a system causes a failure of the system as a whole, the 

availability is called serial availability. To calculate the availability of such a 

complex system or device, multiply the availability of all its parts. 

For example, a server consists of the following components and the MTTR of 

any part of the server is 8 hours. 

 

 

Figure 13: System with serial components 

 

Component MTBF (h) MTTR (h) Availability in % 

Power supply 100,000 8 0.9999200 99.99200 

Fan 100,000 8 0.9999200 99.99200 

System board 300,000 8 0.9999733 99.99733 

Memory 1,000,000 8 0,9999920 99.99920 

CPU 500,000 8 0.9999840 99.99840 

Network Interface 

Controller (NIC) 
250,000 8 0.9999680 99.99680 

Table 4: Availability in percentages 

The availability of the total server is: 0.9999200 × 0.9999200 × 0.9999733 ×

0.9999920 × 0.9999840 × 0.9999680 = 0.9997733 = 99.977%. This is lower 

than the availability of any single component in the system. Therefore, the more 

components a system includes (and each component is critical for the total 

system), the lower the total availability becomes. 

To increase the availability, systems (composed of a various components) can 

be deployed in parallel. This considerably increases the availability, since the 
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combined system no longer contains a Single Point Of Failure. If one component 

becomes unavailable, the affected system goes down, but the other system can 

take over. Consider the example below. Two systems run in parallel, each 

complete system having an availability of 99%. 

 

 

Figure 14: Two systems in parallel 

The chance of both systems being unavailable at the same time is very small and 

can be calculated as follows3: 

𝐴𝑇 = 1 − ∏(1 −

𝑛

𝑖=1

𝐴𝑖) 

where 

𝐴𝑇 is the total availability of the configuration 

𝑛 is the total number of systems in parallel 

𝐴𝑖 is the availability of the i-th system 

As an example, let’s assume an organization uses two internet connections, each 

from another provider. The first is their primary connection, which has an 

average uptime of 99.99%. The second connection is the backup connection in 

case the first one fails. This one has an average uptime of 99.9%. This leads to 

a combined uptime of: 

1 − (1 −  0.9999) × (1 − 0.999) = 0.9999999 (or 99.99999%), which is 

significantly higher than each of the individual connections.  

Another example: when the availability for each system is estimated to be 99%, 

the combined availability in a parallel setup is:  

 

Situation Availability Yearly downtime 

1 system 99% 87h 36m 

2 systems 99.99% 52m 

3 systems 99.9999% 32s 
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Table 5: Availability with multiple components 

In this situation, it is important to have no single point of failure that combines 

the set of systems (for instance, all systems run on the same power supply). In 

that case, the availability of the system is fully dependent on that one 

component.  

 

It is often not useful to have more than two systems to achieve high availability. 

Studies4 show that having dual redundancy for a system is sufficient because 

other components of the system, such as human error from system 

administrators, have orders of magnitude worse MTBF. Therefore, adding a 

(costly and complex) third system would be cancelled out by unavailability due 

to other causes. Triple redundancy would not increase the overall availability 

of the system, but actually decrease it, due to the complexity of its application. 

 

SKIPPED TEXT 

4.2.3 Scalable cloud environments 

In cloud environments, there is often no need to guess the required capacity. 

Since resources such as virtual machines are easily scalable in cloud 

environments, you can simply start with a large system and scale down if the 

system is underutilized. Or vice versa: Start with a small system and scale up 

until the performance is acceptable. 

Of course, this only works well if you can reliably measure system performance. 

Fortunately, cloud environments usually have very extensive logging and 

monitoring capabilities to help with this. 

4.3 Performance of a running 
system 

4.3.1 Managing bottlenecks 

The performance of a system is based on the performance of all its components, 

and the interoperability of various components. Therefore, measuring the 

performance of a system only has value if the complete system is taken into 
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account. For instance, building an infrastructure with really fast networking 

components has little benefits when the used hard disks are slow.  

A performance problem may be identified by slow or unresponsive systems. 

This usually occurs because of high system loads, causing some component of 

the system to reach some limit. This component is referred to as the bottleneck 

of the system, because the performance or capacity of the entire system is 

limited by a single component, slowing down the system as a whole. To find 

this bottleneck, performance measurements are needed.  

Only when we know where in the system the bottleneck occurs, we can try to 

improve performance by removing that bottleneck.  

When a bottleneck is removed, usually another bottleneck arises. In fact, no 

matter how much performance tuning is done, there will always be a bottleneck 

somewhere. According to the Bottleneck law5, every system, regardless of how 

well it works, has at least one constraint (a bottleneck) that limits its 

performance. This is perfectly fine when the bottleneck does not negatively 

affect the performance of the entire system to the point where the stated 

performance requirements are no longer met. 

Benchmarking is a way to measure individual components, while system 

performance tests measure the system as a whole.  

4.3.2 Performance testing 

There are three major types of performance tests for testing complete systems: 

• Load testing - This test shows how a system performs under the 

expected load. It is a check to see if the system performs well under 

normal circumstances. 

• Stress testing - This test shows how a system reacts when it is under 

extreme load. Goal is to see at what point the system "breaks" (the 

breakpoint, as shown in Figure 18) and where it breaks (the 

bottleneck). 

• Endurance testing - This test shows how a system behaves when it is 

used at the expected load for a long period of time. Typical issues that 

arise are memory leaks, expanding database tables, or filling up disks, 

leading to performance degradation. 
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Figure 18: Performance breakpoint 

Performance testing software typically uses one or more servers to act as 

injectors – each emulating a number of users that run a sequence of interactions 

(recorded as a script, or as a series of scripts to emulate different types of user 

interaction). A separate server acts as a test conductor, coordinating the tasks, 

gathering metrics from each of the injectors, and collecting performance data 

for reporting purposes.  

The usual sequence is to ramp up the load – starting with a small number of 

virtual users and increasing the number over a period of time to some maximum. 

The test result shows how the performance varies with the load, given as number 

of users versus response time.  

A cloud environment is ideal for setting up performance testing environments 

because it can be scaled up to provide the required load and then scaled down 

after the test is complete. This can reduce the cost of running a performance test 

while simulating a very large number of users during the test period. 

Performance testing should be done in a production-like environment. 

Performance testing in a development environment usually produces results that 

have little meaning for what is likely to happen in production. To reduce costs, 

it is sometimes advisable to use a temporary test environment, such as one rented 

from your hardware vendor that has the same components as the production 

environment. If the test environment is underpowered (the machines are not as 

fast as production, the disks are of a different type, etc.), the test results cannot 

be relied upon because they are not comparable to the production environment. 

Even if the underpowered test systems perform well enough to get good test 

results, the faster production system may have performance issues that were not 

experienced in the tests.  
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I have experienced such a situation: A production system was much faster than 

the test system we used. While the tests showed no performance issues on the 

slower test system, the application performed badly on the faster production 

systems. 

The reason was a network protocol that could not receive network packages as 

fast as the production systems could provide it. 

4.4 Performance patterns 

There are various ways to improve the performance of systems. This section 

describes caching, scaling, load balancing, high performance computing, 

designing for performance, and capacity management. 

But first a quick word on increasing performance on other levels than the 

infrastructure. 

4.4.1 Increasing performance on upper 
layers 

Experience learns that 80% of the performance issues are due to badly behaving 

applications. While much effort can be put in optimizing infrastructure 

performance, it is good practice to first check for performance optimizations in 

the upper layers. Database and application tuning typically provides much more 

opportunity for performance increase than installing more computing power.  

 

I have seen a management report that used to run for 45 minutes. After tuning 

the database, it ran in 3 minutes, just by optimizing some SQL queries and 

adding a database index. Increasing the performance that much in the 

infrastructure layer instead is not only very complicated but also very 

expensive! 

Another example was a badly programmed application where each read and 

write to disk opened and closed the file, instead of opening the file at the start 

of the application and keeping it open until the application is stopped.  

Since opening and closing files is much slower than the actual reading or 

writing of data, just keeping files open vastly increased the performance of the 

application. 
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Application performance can benefit from prioritizing tasks, working from 

memory as much as possible (as opposed to working with data on disk), and 

making good use of queues and schedulers. 

Of course, bad behaving applications can only be fixed when you have access 

to the application's source code. For commercial off-the-shelf software, this is 

usually not feasible. Tuning the databases used by the application, by for 

instance adding indexes, can be an opportunity to significantly improve 

performance. Fortunately, today’s databases use automated query optimizing, 

where the performance of often used queries automatically gets better over time. 

In the current era of multi-core processors, it is important for application 

developers to understand how applications work on a multithreaded system. 

Unfortunately, this is not always the case and many applications run on only one 

of the available cores of the CPU.  

 

Intel introduced circuitry in its processors that can boost the clock speed of one 

of the cores when a running single threaded application is detected. This boost 

of the clock speed would normally introduce too much heat in the processor, but 

since the other cores are not performing any work in a single threaded 

application, the overall temperature of the CPU stays within range. 

4.4.2 Caching 

Caching improves performance by retaining frequently used data in high-speed 

memory, reducing access times to data.  

Some sources that provide data are slower than others. The approximate speed 

of retrieving data from various sources is shown in Table 8. 

 

Component 
Time it takes to fetch 1 MB of 

data (ms) 

Network, 1 Gbit/s 675 

Hard disk, 15k rpm, 4 KB disk blocks6 105 

Main memory DDR3 RAM7 0.2 

CPU L1 cache8 0.016 

Table 8: Approximate speeds of fetching data 

Especially in situations where retrieving data takes relatively long (for instance 

reading from hard disk or from the network), caching in memory can 

significantly improve performance. 
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4.4.2.1 Disk caching 

Disks are mechanical devices that are relatively slow by nature. To speed up the 

reading of data from disk, disk drives contain cache memory. This cache 

memory stores all data recently read from disk, and some of the disk blocks 

following the recently read disk blocks. When the data is read again, or (more 

likely) the data of the following disk block is needed, it is fetched from high-

speed cache memory. 

Disk caching can be implemented in the storage component itself (for instance 

cache used on the physical disks or cache implemented in the disk controller), 

but also in the operating system. The general rule of thumb that adding memory 

in servers improves performance is due to the fact that all non-used memory in 

operating systems is used for disk cache. Over time, all memory gets filled with 

previously stored disk requests and prefetched disk blocks, speeding up 

applications.  

4.4.3 Web proxies 

Another example of caching is the use of web proxies. When users browse the 

internet, instead of fetching all requested data from the internet each time, earlier 

accessed data can be cached in a proxy server and fetched from there. This has 

two benefits: users get their data faster than when it would be retrieved from a 

distant web server, and all other users are provided more bandwidth to the 

internet, as the data did not have to be downloaded again.  

4.4.4 Operational data store 

An Operational Data Store (ODS) is a read-only replica of a part of a database 

for a specific use. Instead of accessing the main database for retrieving 

information, often used information is retrieved from a separate small ODS 

database, not degrading the performance of the main database.  

 

 

 

A good example of this is a website of a bank. Most users want to see their actual 

balance when they login (and maybe the last 10 mutations of their balance). 

When every balance change is not only stored in the main database of the bank, 

but also in a small ODS database, the website only needs to access the ODS to 

provide users with the data they most likely need. This not only speeds up the 

user experience, but also decreases the load on the main database.  
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4.4.5 Front-end servers 

In web facing environments storing most accessed (parts of) pages on the web 

front-end server (like the static pictures used on the landing page) significantly 

lowers the amount of traffic to back-end systems. Reverse-proxies can be used 

to automatically cache most requested data as well. 

4.4.6 In-memory databases 

In special circumstances, entire databases can be run from memory instead of 

from disk. These so-called in-memory databases are used in situations where 

performance is crucial, like in real-time SCADA systems and in high 

performance online transaction processing (OLTP) systems. Of course, special 

arrangements must be made to ensure data is not lost when a power failure 

occurs. 

As an example, SAP HANA is an in-memory database for SAP enterprise 

resource planning (ERP) systems. 

4.4.7 Edge servers 

The major cloud providers have datacenters around the world. In addition, they 

often offer edge locations. These edge locations can be used to cache data in 

close proximity to end users.  

For example, a Web site that offers streaming videos can place copies of those 

videos in a number of edge locations around the world to ensure a good user 

experience for users in all locations. 

 

SKIPPED TEXT 

4.5 Cloud security 

The public cloud follows a shared responsibility model. In this model, the cloud 

provider takes care of security of the cloud, and the customer takes care of 

security in the cloud. Table 9 shows this sharing of responsibilities. Depending 

on the cloud deployment model used, the separation of responsibilities differs. 
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 On-

premises 

IaaS PaaS SaaS 

Data classification Client Client Client Client 

Application configuration Client Client Client Client 

Identity & Access Client Client Client Client 

Application Client Client Client Cloud 

Operating system Client Client Cloud Cloud 

Compute Client Cloud Cloud Cloud 

Storage Client Cloud Cloud Cloud 

Network Client Cloud Cloud Cloud 

Physical security Client Cloud Cloud Cloud 

Table 9: Shared responsibility model: Client versus Cloud provider 

Although some people express doubts about the security of the public cloud, in 

practice it turns out that the public cloud is very secure. All components in the 

public cloud are designed with security in mind. A lot is invested in security by 

the cloud providers and a large number of specialists work daily to optimize 

cloud security. Few organizations can achieve such a high level of security in 

their own datacenter. So, the main question is: Do you really think you can do 

better yourself?  

So, while the cloud is very secure, it can easily become insecure through 

incorrect use or configuration errors. An example is a virtual machine in Azure. 

These are given a public IP address by default. This makes the VM easy to find 

from the internet and gives hackers a chance to attack it. Therefore, when 

creating a new VM, either the public IP address must be disabled, or access to 

the IP address must be blocked with a firewall. By the way, a VM in AWS does 

not have a public IP address by default.  

4.6 Security Patterns 

Information can be stolen in many ways. Here are some of the more common 

ways related to infrastructure that you should be aware of: 

• Key loggers can be maliciously installed on end user devices. They 

can send sensitive information like passwords to third parties. 

• Network sniffers can show network packages that contain sensitive 

information or replay a logon sequence by which a hacker can 

successfully authenticate to an IT system. 

• Data on backup tapes outside of the building can get into wrong 

hands. 
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• PCs or disks that are disposed of can get into the wrong hands. 

• Corrupt or dissatisfied staff can copy information. 

• End users are led to a malicious website that steals information (also 

known as phishing). 

To deal with these risks, proper security processes must be put in place, based 

on the prevention of security problems, the detection of security breaches as 

soon as they occur, and the responsive actions to be taken to minimize damage 

and restore operations. 

4.6.1 Prevention 

4.6.1.1 Security policies 

Managing security is all about managing risks. If there are no risks, we don't 

need any security controls. The effort we put in securing the infrastructure 

should therefore be directly related to the risk at hand. Risk can be mitigated. 

Here are some techniques to make data secure: 

• Design for minimum risk. Design the system to eliminate as much 

vulnerabilities as possible. This can for instance be done using source 

code analysis in software development and by running critical 

systems stand-alone instead of connected to other systems. 

• Incorporate safety devices. Reduce risk using devices like firewalls 

and hardened screened routers. These devices usually don’t affect the 

probability, but reduce the severity of an exploit: an automobile seat 

belt doesn’t prevent a collision, but reduces the severity of injuries. A 

firewall does not prevent attacks, but reduces the chance of an 

attacker connecting to sensitive parts of the network. 

• Implement training and procedures. These can mitigate risks that 

are people-bound like social engineering attacks. 

Ensure that appropriate security processes are in place and regularly tested. It 

should be clear who is responsible for security monitoring, what should happen 

if a security incident is detected, and what security processes should be followed 

before new or modified software is put into production. 

In addition, it is often possible to have security policies monitored 

automatically. Cloud providers in particular often provide options to enforce and 

monitor policies for all cloud resources in use. There are sets of predefined 

policies available, such as the CIS benchmarks9. These are general best 

practices, for operating systems, network components, desktops, virtualization 

platforms and cloud services, among others. CIS benchmarks can be 
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implemented and monitored manually, but they can also be enforced 

automatically in, for example, a public cloud environment.  

4.6.1.2 Zero Trust 

Zero trust is a security framework that moves defense from network perimeters 

to a combination of users, resources and locations (who wants to use what and 

where). Zero trust does not trust people and systems based on their location, but 

requires all users, inside or outside the organization's network, to be 

continuously authenticated, authorized and validated before being granted 

access to applications and data.  

Zero Trust assumes that there is no traditional network edge; networks can be 

local, in the cloud, or hybrid with users in any location. 

A zero trust architecture includes continuous multi-factor authentication, 

network micro-segmentation, encryption, endpoint security, analytics and 

robust auditing. 

Zero trust became popular as a response to hybrid cloud environments, where 

data is stored both on-premises and in public clouds and where users must be 

able to access the data securely from any location. 

4.6.1.3 Segregation of duties and least privilege 

Segregation of duties (also known as separation of duties) assigns related 

sensitive tasks to different people or departments. The reasoning is that if no 

single person has total control of the system’s security mechanisms, no single 

person can compromise the system.  

This concept is related to the principle of least privilege. Least privilege means 

that users of a system should have the lowest level of privileges necessary to 

perform their work, and should only have them for the shortest length of time. 

In many organizations, a systems manager has full control over the system’s 

administration and security functions. In general, this is a bad idea. Security 

tasks should not automatically be given to the systems manager. In secure 

systems, multiple distinct administrative roles should be configured, like a 

security manager, a systems manager, and a super user. 

The security administrator, the system administrator and the super user do not 

necessarily have to be different people (but that is of course preferable). But 

when, for example, a system administrator takes on the role of the security 

administrator, this role change is monitored, logged and audited. Although it 

may be inconvenient for the person to switch from one role to another, the roles 

are functionally distinct and must be performed as such to maintain a high level 

of security. 
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In addition, a two-man control policy can be applied, in which two systems 

managers must review and approve each other’s work. The purpose of two-man 

control (also known as the four eyes principle) is to minimize fraud or mistakes 

in highly sensitive or high-risk transactions. With two-man control, two systems 

managers are needed to complete every security sensitive task. 

4.6.1.4 Privileged Access Management (PAM) 

Privileged Access Management (PAM) is a network component that provides 

secure access to systems or parts of systems (such as databases) by users who 

require high privileges.  

An example is the administrator or root account of an operating system. Under 

normal circumstances, this account is never used for day-to-day tasks, even by 

systems administrators. In exceptional cases, however, these accounts may be 

needed. In this case, the systems manager does not log into the operating system 

directly, but logs into a PAM system with his own credentials, using multi-factor 

authentication. The PAM has a password vault and uses the administrator or 

root password to log into the required operating system on behalf of the user. 

The user can then perform the intended work. When finished, the user logs out 

of the PAM and the PAM immediately changes the administrator or root 

password. This way, the user will never know what the password was or what 

the new password is.  

All actions on a PAM system are logged for auditing purposes. As an additional 

feature, many PAM systems can log all keystrokes to audit logs, and it is 

sometimes possible to automatically capture a video of the actions on the screen. 

4.6.1.5 Layered security 

A layered security strategy is a good practice to enhance the overall IT security. 

The essence of layered security (also known as a Defense-In-Depth strategy) is 

to implement security measures in various parts of the IT infrastructure. This 

approach is comparable with physical security.  

 

If a burglar wants to steal money from your house, he has to climb over the 

fence in the garden, then he has to get through a closed front door with locks, 

then he has to find the safe with the money, he has to break into the safe, get the 

money, and leave the premises. All of this must be done without being seen or 

heard; he must not be noticed by anyone during all of these steps.  

It is obvious why this layered security works so well: 

 

- Many barriers must be crossed (fence, door, safe). 
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- Opening every barrier takes different technical skills (climbing over the fence, 

lock picking a door with a mechanical lock, opening a safe with a digital lock). 

- The burglar is slowed down by every barrier he tempts to cross, which 

increases the possibility of detection. 

- The burglar doesn't know in advance how many barriers he has to cross, how 

much time each barrier takes, and which knowledge is needed for every barrier. 

- The chance of getting caught is present in every step. 

- When one barrier is crossed, the security of all other barriers is still intact.  

 

In IT infrastructure, instead of having one big firewall and have all your security 

depend on it, it is better to implement several layers of security. Preferably these 

layers make use of different technologies, which makes it harder for hackers to 

break through all barriers; they will need a lot of knowledge for each step.  

Each layer can be integrated with an Intrusion Detection System (IDS – see 

section 7.5.2.2) or some other system that detects break-ins, which increases the 

chance of getting caught. On top of this, more layers introduce uncertainty for 

the hacker: it is unknown many barriers must be passed to get to the data, and 

how long will this take, leading to demotivation. And if one layer is passed 

unnoticed, or if one security layer contains a vulnerability, the total security is 

still intact, albeit with less layers.  

A disadvantage of implementing layered security is that it increases the 

complexity of the system. Every security layer must be managed, and systems 

managers must have knowledge about all used technologies.  
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Picture 4: Computer racks10 

More flexible air cooling replaced the traditional water cooling and 

sophisticated fire prevention, detection and extinguishing systems were 

installed. Because almost all work on the servers could now be done without 

touching the physical equipment, lights-out datacenters were introduced, where 

during normal operations no people are needed inside the datacenter, and the 

lights could thus be switched off. 

The pace of innovation in datacenters is increasing, driven by cloud service 

providers and large-scale datacenters running internet applications like search 

engines, video streaming, and social media.  

Very large datacenters today contain shipping containers packed with thousands 

of servers each. When repairs or upgrades are needed, entire containers are 

replaced (rather than repairing individual servers). 

4.7 Datacenter building blocks 

4.7.1 Datacenter categories 

A datacenter can occupy one room in a building, one or more floors, or an entire 

building. Below are four typical datacenter categories. 

• Sub Equipment Room (SER) – a SER is also known as a patch 

closet. They contain patch panels for connections to wall outlets in 

offices and some small equipment like network switches. 
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• Main Equipment Room (MER) – a MER is a small datacenter in the 

organization’s subsidiaries or buildings.  

• Organization owned datacenter – a datacenter that contains all 

central IT equipment for the organization. An organization can have 

multiple datacenters, often with failover and fallback capabilities. 

• Multi-tenant datacenter (also known as co-location) – this 

datacenter category is owned by service providers that provide 

services for multiple other organizations. 

If the datacenter is used for one organization only, it makes sense to install the 

datacenter inside one of the office buildings. But when the datacenter is used by 

multiple organizations, like in case of an internet service provider, choosing a 

location of the datacenter is more difficult. 

4.7.2 Cloud datacenters 

Cloud datacenters that are owned by large public cloud providers are also called 

hyperscaler datacenters, since they are hosting a very large number of servers, 

networking equipment and storage systems. Datacenters of large public cloud 

providers like Amazon Web Services (AWS), Microsoft Azure and Google 

Cloud Platform (GCP) are amongst the world's largest building sites. As an 

example, a typical Google datacenter occupies more than 185,000 m2 (2 million 

square feet) of usable space – the size of 26 soccer fields11. Figure 27 shows a 

picture of the Google datacenter in Council Blufs, IA, USA. Google invested $5 

billion in that datacenter site alone12. 

 

Figure 27: Google datacenter in Council Blufs, IA13 
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Obviously, these datacenters use an enormous amount of power. As an example, 

most Amazon datacenters house between 50,000 and 80,000 servers, with a 

power capacity of between 25 and 30 megawatts14. 

4.7.3 Location of the datacenter 

Finding a good location to build a datacenter can be a nontrivial task. Many 

variables should be considered to determine where a datacenter could be 

installed.  

Below is a checklist that can be used as guidance when choosing a location for 

a datacenter: 

• Environment 

o Is enough space available to expand the datacenter in the 

future? The initial datacenter should be designed with 

enough free space and spare capacity in utilities to allow for 

growth.  

o Is the location vulnerable to flooding? Some countries are 

below sea level, are in a vulnerable delta, or are close to a 

river. In that case make sure the datacenter is not located at 

the ground floor or (worse) the basement, but for instance on 

the third floor. 

 

In 2015, outside of the Amsterdam AMC hospital a large water supply pipe 

broke. The water flooded not only the ground floor of the hospital, but also the 

basement, that hosted steam systems needed to sterilize the hospital’s tools. All 

patients in the hospital were evacuated immediately and the hospital was closed 

for two weeks, leading to multi-million-dollar damages.  

Later, the hospital management acknowledged that putting critical systems in 

the basement was a design flaw in the building’s architecture. 

 

o Is the datacenter located in a hurricane prone area? 

o What is the chance of an earthquake?  

o What is the climate like? Datacenter cooling can be easier 

accomplished and is much cheaper in places with a low 

ambient temperature with low temperature fluctuations. 

o Is the datacenter close to possible external hazards like 

fireworks storage, a waste dump, or a chemical plant? 
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o What is the crime rate? Are there many burglaries in the 

neighborhood? What about vandalism or the possibility of 

terrorism?  

o Is the datacenter near an airport (chance of crashing 

airplanes)? 

o Is the datacenter near an area that is likely to be closed 

because of unforeseen circumstances (like a car crash on a 

nearby highway, a forest fire, a military location, or a 

nuclear plant)? 

o Is the location close to the home or office of maintenance 

staff, systems managers, and external expertise?  

o Can the datacenter be reached easily in case of emergencies?  

o Are hospitals, police, and fire fighters located in the 

vicinity? 

• Visibility 

o Is the location of the datacenter included in public maps (like 

http://www.datacentermap.com)?  

o Does the building have windows? Windows are not 

preferred as they are easy to break into the building. 

o Are markings on the building showing that this building 

contains a datacenter?  

• Utilities 

o Is it possible to have two independent power providers and 

internet providers? 

o Can cabling routes to the building be determined? Is it 

possible to have double power and data connections leave 

the building from two different places? 

o Can cabling routes inside the building be determined in a 

flexible way? Are there multiple paths available to the patch 

panels, floors, and end users? 

o Is the datacenter located in a shared building? What if the 

building must be evacuated? What if the power must be shut 

down due to maintenance activities performed by another 

user of the building? 

o Is enough power available to supply the datacenter? How 

reliable is the power supply? 

http://www.datacentermap.com/
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o Is cheap power available? Can the datacenter use renewable 

energy like wind or water generated power? 

o What is the available bandwidth of the external data 

connections? Is the datacenter close to an internet exchange 

point? Are dark fiber connections possible? How reliable are 

the data connections?  

• Foreign countries 

o Can the country be reached at all times?  

o Is the country politically stable? Are there specific laws and 

regulations you need to adhere to or be aware of?  

o Does the country have a high level of corruption? How 

reliable is the staff? 

o What is the legal status of the data and the datacenter itself? 

4.7.4 Physical structure 

The physical structure of a datacenter includes floors, wall, windows, doors, and 

water and gas pipes. These components, together with the layout of the rooms 

around the actual computer room, are discussed in this section. 

4.7.4.1 Floors 

In datacenters, the floor is quite important, mostly because of the weight of the 

installed equipment. In a typical datacenter, the floor must be able to carry 1500 

to 2000 kg/m2. For instance, one fully filled 19” computer rack weighs up to 

700 kg. The footprint of a rack is about 60x100 cm, leading to a floor load of 

1166 kg/m2. By comparison, in office buildings typically the floor can carry 

approximately 500 kg/m2. 

Many datacenters have raised floors. Raised floors consist of a metal framework 

carrying removable floor tiles. These tiles are usually 60×60 cm in size. Tiles 

can be lifted individually to reach cables installed under the raised floor. To lift 

the tiles, a "floor puller" or "tile lifter" is used, as shown below. 
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Picture 5: Removable tiles in a raised floor 

Raised floors are typically installed at heights between 40 cm and 120 cm. Vents 

in the raised floor provide cool air flow to the racks placed on the floor. Under 

the raised floor, data and power cables are installed (usually in cable trays).  

It is important to keep data cables and power cables separated from each other, 

as electrical current flowing through the power cables can interfere with data 

being sent through the data cables. A rule of thumb is to keep one phase 

electricity and data 20 cm apart from data cables, and 3 phase power and data 

cables 60 cm apart. 

Not all datacenters use raised floors anymore, since raised floors have the 

following disadvantages: 

• Raised floors are expensive. 

• The total available height in the datacenter is decreased, which could 

lead to regulation problems and problems installing large equipment. 

• The maximum floor load is limited. 

• Doors and equipment loading slopes are hard to install due to the 

difference in floor height. 

• Under the raised floor, fire, such as from a short circuit, could easily 

spread throughout the datacenter. 

Instead of installing cables under raised floors, overhead cable trays can be used.  

In either situation, cable trays can be installed with several layers. For instance, 

the bottom layer can be used for data copper UTP cables, the middle layer for 

fiber cables, and the top layer for power cables. 
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4.7.4.2 Walls, windows, and doors 

Because of fire safety and physical intrusion prevention, walls should reach 

from the floor to the building’s ceiling. Walls should have an adequate fire rating 

to serve as a physical firewall.  

Windows in the outside of the building, facing the computer room, are not 

desirable in a datacenter. If they are present however, they must be translucent 

and shatterproof, and it must be impossible to open them. 

Doors in the datacenter must resist forced entry and have a fire rating equal to 

the walls. Emergency exits must be clearly marked, monitored, and alarmed. 

Doors should be large enough to have equipment brought in, with a minimal 

width of 1 m and a minimal height of 2.10 m. 

4.7.4.3 Water and gas pipes 

When the datacenter is part of a larger building, water or gas pipes may have 

been installed under the floor, in the walls, or (even worse) above the ceiling of 

the datacenter. At multiple occasions, I have seen leakage from water pipes in 

the ceiling of a datacenter that led to damage of equipment. Datacenter operators 

should know where the shutoff valves are to water or gas pipes in the building.  
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4.8 Networking building blocks 

4.8.1 OSI Reference Model 

The architecture of almost every network is based on the Open Systems 

Interconnection (OSI) standard reference model. The OSI Reference Model 

(OSI-RM) was developed in 1984 by the International Organization for 

Standardization, a global federation of national standards organizations 

representing approximately 130 countries. 

A host or node is a component on the network, like a server, a router, a switch 

or a firewall. The OSI-RM consists of a set of seven layers that define the 

different stages that data must go through to travel from one host to another over 

a network. Figure 40 shows these seven layers, including some examples of 

implementations of that layer. 
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Figure 40: OSI layers 

The layers can easily be recalled using the mnemonic: 

People Do Need To See Pamela Anderson,  

where the first letter of each word is the first letter of each layer, starting from 

layer one. 

 

The main benefit of implementing the OSI stack is that it allows implementing 

network components independently of each other, while still ensuring all 

components work together. For instance, TCP/IP, which is used to send 

information over the internet, comprises the TCP protocol in layer 4 with the IP 

protocol in layer 3. Without changing the IP protocol, an UDP/IP stack can be 

used as well, by just changing the level 4 protocol from TCP to UDP.  

Because each layer in the OSI stack can be implemented independently from the 

layer below and above. This provides freedom to implement the network stack 
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in an optimal way for a certain usage. For instance, local area networks use 

different building blocks than wide area networks or the internet.  

Each layer’s payload contains the protocol for the next layer. Consider the 

example in Figure 41.  

 

 

Figure 41: Frames embedded in each other 

Figure 41 shows an Ethernet frame with an IP packet in it, with a TCP segment 

in it, with a HTTP command in it. The nesting of these protocols allows sending 

HTTP traffic (like web pages) to another computer using an Ethernet network 

in a reliable way. 

This chapter is organized based on the OSI model, starting from the bottom layer 

and working up to the top of the stack. For each layer the most used 

implementations are discussed.  

4.8.2 Physical layer 

The physical layer defines physical hardware components of the network, such 

as Network Interface Controllers (NICs), copper and fiber optic cables, leased 

lines, cable internet, and DSL. 

4.8.2.1 Cables 

At the most elementary level, networking is about cables. In early networks coax 

cables were used to interconnect computers, but most copper-based cables today 

are of the twisted pair type. Apart from copper cabling, fiber optic cabling is 

used quite often as well. 
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4.8.2.1.1 Twisted pair cables 

Twisted pair cables consist of paired insulated wires that are twisted around each 

other to prevent interference. A cable contains multiple wire pairs, that can be 

shielded (Shielded Twisted Pair - STP) or unshielded (Unshielded Twisted Pair 

- UTP). UTP is the most common cable in networking today. 

 

 

Picture 11: UTP cable 

Having separate pairs of wires for transmitting data (TX) and receiving data 

(RX) allows for full duplex communication. Full duplex communication means 

that data may be transmitted and received by a host at the same time. 

UTP comes in several quality ratings called categories. The rating is based on 

how tightly the copper wires are intertwined: The tighter the wind, the higher 

the rating and its resistance to interference and attenuation. This resistance to 

interference is crucial for providing higher data rates. Table 12 shows a list of 

today’s most used categories and their maximum bandwidth. 

 

Category Maximum bandwidth 

5 or 5e 1 Gbit/s 

6 10 Gbit/s 

7 10 Gbit/s 

8 40 Gbit/s 

Table 12: Twisted pair cables and their bandwidth 

4.8.2.1.2 Coax cable 

Coax cable consists of an inner conductor surrounded by a flexible, tubular 

insulating layer, surrounded by a tubular conducting shield.  
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Picture 12: Coax cable15 

Historically, coax cable provided the highest bandwidth possible in copper 

cabling. It is still heavily used by cable companies, but improvements in UTP 

and STP cables allow higher bandwidths, eliminating coax cables for most other 

uses.  

4.8.2.1.3 Fiber optic cable 

A fiber optic cable contains multiple strands of fiber glass or plastic, that each 

provide an optical path for light pulses. The light source can either be a light-

emitting diode (LED) or a laser.  

The maximum transmission distance depends on the optical power of the 

transmitter, the optical wavelength utilized, the quality of the fiber optic cable 

and the sensitivity of the optical receiver. 

Two types of fiber optic cable are most common:  

• Multi-Mode Fiber (MMF) 

• Single Mode Fiber (SMF) 

SMF is used for long distance communication (up to 80 km), and MMF is used 

for distances of 500m or less, typically used in the datacenter or on a campus 

setup. 

Light waves in Multi-Mode Fiber (MMF) are dispersed into numerous paths, 

also known as modes, as they travel through the cable's core – hence the name.  
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Figure 42: Multi-Mode Fiber 

Single-Mode Fiber (SMF) is designed to carry only a single narrow band of ray 

wavelengths of light (a single mode).  

 

 

Figure 43: Single-Mode Fiber 

SMF requires a light source with a narrow spectral width (typically a laser). 

SMF has a much smaller core than MMF. The small core and single light-wave 

virtually eliminates any distortion that could result from overlapping light 

pulses, providing transmissions over long distances. SMF is more expensive 

than MMF, not only because of cable costs, but also because of the more 

expensive interface cards needed to send a single ray of light. 

Using one light source, the maximum bandwidth of a fiber optics cable (both 

MMF and SMF) is approximately 10 Gbit/s. Using Dense Wavelength-Division 

Multiplexing (DWDM) the capacity of fiber optics cables can be extended. By 

using multiple light sources, each having a distinct color (wave length), multiple 

channels can travel though the fiber optics cable simultaneously. This way up 

to 80 channels can be created, leading to a total bandwidth of 800 Gbit/s for a 

single strand of fiber cable. 

SKIPPED TEXT 

4.9 Storage building blocks 

Servers can use internal storage, but most use external storage, sometimes 

combined with internal storage. A model of storage building blocks is shown in 

Figure 70. Each building block is discussed in detail in de subsequent sections, 

starting at the lowest building blocks. 
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Figure 70: Storage model 

4.9.1 Disks 

Two types of disks are in use today:  

• Mechanical hard disks 

• SSD disks 

Disks are connected to disk controllers using a command set, based on either 

ATA or SCSI. 

4.9.1.1 Command sets 

Disks communicate with disk controllers using a protocol based on either the 

ATA or SCSI command set.  
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Advanced Technology Attachment (ATA), also known as IDE, uses a relatively 

simple hardware and communication protocol to connect disks to computers 

(mostly PCs). For many years, ATA provided the most common and the least 

expensive disk interface. 

Small Computer System Interface (SCSI) is a set of standards for physically 

connecting and transferring data between computers (mostly servers) and 

peripheral devices, like disks and tapes. The SCSI standard defines command 

sets for specific peripheral device types. The SCSI command set is complex - 

there are about 60 different SCSI commands in total. 

The need for increased bandwidth and flexibility in storage systems made the 

original parallel SCSI and ATA standards an inefficient option. Serial interfaces 

replaced the parallel interfaces, but the disk commands are still the same.  

4.9.1.2 Mechanical hard disks 

Mechanical disks consist of vacuum sealed cases with one or more spinning 

magnetic disks on one spindle and a number of read/write heads that can move 

to reach each part of the spinning disks. Picture 19 shows a mechanical hard 

disk with its cover removed, 

 

Picture 19: Hard disk internal mechanical construction 

 

In today’s systems, three mechanical (spinning) disk types are most common, 

depicted by their used interface: 

• Serial ATA (SATA) disks 

• Serial Attached SCSI (SAS) disks 

• Near-Line SAS (NL-SAS) disks 
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SATA disks are low-end high-capacity disks. SATA disks are ideal for bulk 

storage applications (like archiving or backup) as they have a low cost per 

gigabyte. SATA disks are also often used in PCs and laptops. SATA disks use 

the SMART command set to control the disk. This command set is limited, but 

easy to implement. 

SAS disks are relatively expensive, high end disks with spinning disk platters 

with a rotational speed of 10,000 or 15,000 rpm. This makes them very fast, but 

they typically have 25% of the capacity of SATA or NL-SAS disks. 

SAS disks are high-end disks, because they have better error correction 

capabilities than SATA disks, and can move erroneous disk sectors to spare 

sectors automatically, making the disks very reliable. In addition, SAS uses the 

SCSI command set that includes error-recovery and error-reporting and more 

functionality than the SMART commands used by SATA disks. 

NL-SAS disks have a SAS interface, but the mechanics of SATA disks. Because 

NL-SAS disks use the SAS protocol, they can be combined with faster SAS 

disks in one storage array. They are used for bulk storage applications as they 

can store much data, have a low cost per gigabyte and use much less energy than 

SAS disks, as they typically spin at just 7,200 rpm.  

4.9.1.3 Solid State Drives (SSDs) 

A Solid State Drive (SSD) is a disk that doesn’t have moving parts and is based 

on flash technology. Flash technology is semiconductor-based memory that 

preserves its information when powered off. SSDs are connected using a 

standard SAS disk interface. 

SSD’s main advantage is performance. SSDs have no moving parts, so data can 

be accessed much faster than using mechanical disks (microseconds vs. 

milliseconds). Most storage vendors now offer all-flash arrays – storage systems 

using only SSD disks. For high-demanding Online Transaction Processing 

(OLTP) systems, these all-flash arrays are the preferred choice today, because 

of their high performance. 
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Picture 20: SSD disk16 

SSDs consume less power, and therefore generate less heat, than mechanical 

disks. And since they have no moving parts, they generate no vibrations that 

could influence or harm other components, or shorten their lifetime. 

The main disadvantage of SSDs used to be their price per gigabyte, which was 

significantly higher than that of mechanical drives. But since 2020, the prices of 

SSDs have fallen to the point where they are about the same price as mechanical 

drives. In the coming years, mechanical drives are expected to be used only as 

cheap, low-end storage for applications such as archiving. 

Another disadvantage of SSD is that the used flash memory can only be 

rewritten a limited number of times – the disks “wear out” more rapidly than 

mechanical disks. To overcome this disadvantage, SSDs keep track of the 

number of times a sector is rewritten, and map much used sectors to spare 

sectors if they are about to wear out. It is important to monitor the wear level of 

heavily used SSDs, so they can be replaced before they break. 

Some SSDs utilize RAID technology internally (RAID is discussed in section 

10.2.3.1), to distribute data over the available flash chips on the SSD disk. The 

more RAID channels are available, and the bigger the number of flash chips, the 

faster the SSD disk can deliver data and the more reliable the SSD becomes. 

Today’s Non-Volatile Memory Express (NVMe) drives are capable of 

delivering hundreds of thousands of read/write operations and gigabytes of 

throughput per second. Because of this high speed, NVMe-based SSD disks are 

often connected directly through the PCIe bus, rather than through a separate 

disk controller. Technology is moving fast in this area, so more advanced flash 

storage technologies are expected in the forthcoming years.  
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4.9.1.4 Disk capacity - Kryder's law 

Since the introduction of the first disk drives, physical disk sizes shrunk and 

disk capacity increased every year.  

Figure 71 shows that the average disk capacity has followed a logarithmic 

increase in size for the last 30 years (note that the Y-axis is logarithmic instead 

of linear).  

 

 

Figure 71: Kryder’s law17 

Kryder's law18 states that "the density of information on hard drives has been 

growing at a rate, increasing by a factor of 1000 in 10.5 years, which roughly 

corresponds to a doubling every 13 months". Since 2005 we see a slight slowing 

of the curve, but it is still reasonably correct since 1983. 
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Picture 21: 8 bytes versus 8,000,000,000 bytes19 

Picture 21 illustrates Kryder’s law – it shows the physical size of 8 bytes of core 

memory from the 1960s, and a micro-SD flash card containing 8 GB of memory 

from the 2010’s – one billion (1,000,000,000) times as much storage in 50 years. 
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5.1 Introduction 

Compute is an umbrella term for computers located in the datacenter that are 

either physical machines or virtual machines. Physical computers contain power 

supplies, Central Processing Units (CPUs), a Basic Input/Output System 

(BIOS), memory, expansion ports, network connectivity, and – if needed – a 

keyboard, mouse, and monitor.  

 

 

Figure 84: Compute in the infrastructure model 

5  
 

COMPUTE 
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Originally, the word computer was used for a person who performed manual 

calculations (or computations). Beginning in the early 1900s, the word computer 

was also used for calculators. The first calculators were mechanical calculators. 

Computers as we know them today have two specific characteristics: they 

calculate, and they are programmable. Programmable computers became 

feasible only after the invention of punch cards, which allowed computers to 

process sequences of data. 

The British Colossus computer, made during World War II, was the world's first 

programmable computer. However, its status was never publicly recognized 

because information about it was secret under British secrecy laws. 

The first widely recognized computer was the ENIAC (Electronic Numerical 

Integrator And Computer). Designed in 1943, the ENIAC was funded by the 

U.S. Army in the middle of World War II. It was completed and fully 

operational in 1946 (after the war) and remained in operation until 1955. 

Although the original purpose of ENIAC was to calculate artillery firing tables 

for the U.S. Army's Ballistic Research Laboratory, the machine was first used 

to perform calculations for the design of the hydrogen bomb. 

 

 

Picture 26: ENIAC20 

The ENIAC could perform 5,000 operations per second, which was spectacular 

at the time. However, it used more than 17,000 vacuum tubes, each with a 

limited life span, which made the computer highly unreliable. The ENIAC got 

its input using an IBM punched card reader, and punched cards were used for 

output as well.  
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As a result of the invention of the transistor in 1956, in the 1960s computers 

started to be built using transistors instead of vacuum tubes. Transistor-based 

machines were smaller, faster, cheaper to produce, required less power, and 

were much more reliable. 

The transistor-based computers were followed in the 1970s by computers based 

on integrated circuit (IC) technology. ICs are small chips that contain a set of 

transistors providing standardized building blocks like AND gates, OR gates, 

counters, adders, and flip-flops. By combining building blocks, CPUs and 

memory circuits could be created.  

The subsequent creation of microprocessors decreased size and cost of 

computers even further, and increased their speed and reliability. In the 1980s 

microprocessors were cheap enough to be used in personal computers. 

Today’s compute systems include mainframes, midrange systems, and x86 

servers. They comprise processors, memory, and interfaces, and they can be 

implemented as physical or virtual machines. 

5.2 Compute building blocks 

5.2.1 Computer housing 

Originally, computers were stand-alone complete systems, called pedestal or 

tower computers, which were placed on the datacenter floor. Except for 

mainframes, most x86 servers and midrange systems are now rack mounted or 

placed in enclosures as blade servers. 

Rack mounted x86 servers are complete machines, typically 1 to 4 Rack Units 

high (for more information on Rack Units, see section 8.2.8). Since they are 

complete machines, they need their own power cables, network cables and SAN 

cables. 
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Picture 27: A stack of rack mounted servers21 

Blade servers, on the other hand, are servers without their own power supply or 

expansion slots. They are placed in blade enclosures, enabling a high server 

density in a small form factor. Blade servers are connected to shared power 

supplies, by a wiring system called a backplane. 

In general, systems based on blade servers are less expensive than rack mounted 

servers or pedestal servers because they use the enclosure’s shared components 

like power supplies and fans. 

 

 

Picture 28: Blade enclosure with one blade partially removed22 
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A blade enclosure typically hosts from 8 to 16 blade servers and provides: 

• Shared redundant power supplies for all blades. 

• A shared backplane to connect all blades.  

• Redundant network switches to connect the blades’ Ethernet 

interfaces providing redundant Ethernet connections to other systems. 

• Redundant SAN switches to connect the HBA interfaces on the 

blade servers providing dual redundant Fibre channel connections to 

other systems. 

• A management module to manage the enclosure and the blades in it. 

The amount of wiring in a blade server setup is substantially reduced when 

compared to traditional server racks, leading to less possible points of failure 

and lower initial deployment costs. 

A set of blade servers in an enclosure typically uses less electrical power than 

individual rack mounted servers due to the lower overhead of the shared 

components in the enclosure. From a deployment perspective, blade servers are 

also less expensive to install, primarily because the enclosure is a wire-once 

component and additional blades can be added with a minimum of time and cost. 

 

One often mentioned benefit of using blade servers is that after some years of 

operation, the blades can be replaced by newer and faster blades. In practice, 

this is not always the case.  

Typically, a blade enclosure is only guaranteed to run one or two generations 

of server blades. Newer server blades often don’t fit, or have additional power, 

cooling or bandwidth requirements that do not allow them to be used in an 

existing enclosure.  

For example, a blade enclosure’s power supply and backplane are designed to 

provide a maximum number of watts to a blade. If newer blades need more 

power, then they cannot be used in that blade enclosure, unless the power 

supplies are replaced as well (if possible).  

Newer blades typically also allow for higher network and SAN throughput. The 

blade enclosure might not allow this, or lowers the network bandwidth to allow 

running newer and older blade servers together in one blade enclosure. 

 

Enclosures are often not only used for blade servers, but also for storage 

components like disks, controllers, and SAN switches. 
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5.2.2 Processors 

In a computer, the Central Processing Unit (CPU) – or processor – executes a 

set of instructions. A CPU is the electronic circuitry that carries out the 

instructions of a computer program by performing the basic arithmetic, logical, 

control and input/output (I/O) operations specified by the instructions23. 

Today’s processors contain billions of transistors and are extremely powerful.  

 

 

Picture 29: Intel Xeon Processor24 

A CPU can perform a fixed number of instructions, such as ADD, SHIFT BITS, 

MOVE DATA, and JUMP TO CODE LOCATION, called the instruction set. 

Each instruction is represented as a binary code that the instruction decoder of 

the CPU is designed to recognize and execute. A program created using CPU 

instructions is referred to as machine code. Each instruction is associated with 

an English like mnemonic to make it easier for people to remember them. This 

set of mnemonics is called the assembly language, which is specific for a 

particular CPU architecture.  

There is a one-to-one correspondence of assembly language instructions to 

machine code instructions. For example, the binary code for the ADD WITH 

CARRY machine code instruction may be 10011101 and the corresponding 

mnemonic could be ADC.  

A programmer writing machine code would write the code using mnemonics for 

each instruction. Then, the mnemonics are passed through a program called an 

assembler that performs the one-to-one translation of the mnemonics to the 

machine instruction codes. The machine instruction codes generated by the 

assembler can run directly on the CPU.  

The assembler programming language is the lowest level programming 

language for computers and very hard for humans to create, understand, and 

maintain. Higher level programming languages, such as C#, Java, or Python are 

much more human friendly. Programs written in these languages are translated 
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to assembly code before they can run on a specific CPU. This process is called 

compiling and is done by a high-level language compiler. It allows higher level 

languages to be CPU architecture independent. 

 

Actually, machine code is not the lowest level programming language, because 

most processors also run microcode. Microcode is a tiny program stored on the 

processor chip for each machine instruction. The processor executes multiple 

microcode instructions to implement each machine code instruction. Microcode 

instructions are simple instructions that generate hardware control signals.  

The big advantages are that it simplifies CPU design (replacing hardware with 

software), it's easier to debug, and (in modern systems) you can fix many 

hardware bugs in the field with microcode patches.25. 

 

A CPU needs a high frequency clock to operate, generating so-called clock ticks 

or clock cycles. Each machine code instruction takes one or more clock ticks to 

execute. The speed at which the CPU operates is defined in GHz (billions of 

clock ticks per second). Because of these high clock speeds CPUs are able to 

execute instructions very fast. An ADD (mnemonic for addition) instruction, for 

example, typically costs 1 tick to compute. This means a single core of a 2.4 

GHz CPU can perform 2.4 billion additions in 1 second! 

Each CPU is designed to handle data in chunks, called words, with a specific 

size. The word size is reflected in many aspects of a CPU's structure and 

operation; the majority of the internal memory registers in the processor are the 

size of one word and the largest piece of data that can be transferred to and from 

the working memory in a single operation is also a word. By using large word 

sizes larger chunks of data can be read and written to memory in one clock tick.  

While the first CPUs had a word size of 4 bits, 8-bit CPUs quickly became much 

more popular, where numerical values between 0 and 255 could be stored in a 

single internal memory register. 

The first single chip 16-bit microprocessor was the Texas Instruments TMS 

9900, but the 16-bit Intel 8086 quickly became more popular. It was the first 

member of the large x86 microprocessor family, which powers most computers 

today.  

Today’s 64-bit CPUs have registers that can hold a single value which can have 

264 different values. For example, an integer number between 0 and 264 

represents a virtual memory address. Therefore, a 64-bit CPU can address 

17,179,869,184 TB of memory, as opposed to 32-bit CPUs, which can address 

4 GB memory. 
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5.2.2.1 Intel x86 processors  

Following the huge success of IBM’s PC architecture in 1981, Intel CPUs 

became the de-facto standard for many computer architectures. The original PC 

used a 4.77 MHz 16-bit 8088 CPU. The follow-up model IBM PC/AT used the 

more advanced 16-bit 80286.  

In 1985, Intel produced the 32-bit 80386 and later the 80486 processors. Since 

these names all ended with the number 86, the generic architecture was referred 

to as x86. Later, Intel processors got more marketed names like Pentium (mainly 

because Intel could not get the numbers patented as a name), but the architecture 

was still based on the original x86 design. This allowed for backwards 

compatibility of software; software written for the 8088 could still run on later 

CPU models without a change.  

The latest Intel x86 model is the 24-core i9-13900K Processor, running on 3 

GHz26. 
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5.3 Compute availability 

High availability in servers can be reached by using hot swappable components, 

parity and ECC memory, and lockstepping. 

5.3.1 Hot swappable components 

Hot swappable components are server components like memory, CPUs, 

interface cards, and power supplies that can be installed, replaced, or upgraded 

while the server is running. 

To prevent short circuits or electrical noise that could lead to malfunction of 

electronic components, the server must have dedicated circuitry to disconnect 

the hot swappable component. Alternatively, the server's system board may also 

have special connectors that physically disconnect power to a component while 

the component is removed.  

The virtualization and operating systems using the server hardware must be 

aware that components can be swapped on the fly. For instance, the operating 

system must be able to recognize that memory is added while the server operates 

and must allow the use of this extra memory without the need for a reboot. 
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5.3.2 Parity and ECC memory 

To detect memory failures, parity bits can be used as the simplest form of error 

detecting code. A parity bit is a bit that is added to a byte to ensure that the 

number of bits with the value ‘1’ in a byte is even or odd. 

For instance, with even parity, when a byte of memory contains 1011 0110, the 

number of ones is five. In this case the parity bit stores a 1, making the number 

of bits even (six). When the memory contains 1001 0110 the number of ones is 

four. In the parity bit a 0 is stored, making the number of bits even again (still 

four). 

 

DATA        PARITY 

1001 0110   0 

1011 0110   1 

 

When for some reason one of the data bits or the parity bit itself is "flipped", it 

can be detected: 

DATA        PARITY 

0001 0110   0 -> ERROR: parity bit should have been 1! 

Parity bits enable the detection of data errors but cannot correct the error, as it 

is unknown which bit has flipped.  

In contrast, ECC memory not only detects errors, but is also able to correct them. 

ECC stands for "Error Correction Codes". ECC Memory chips use Hamming 

Code or Triple Modular Redundancy (TMR) as the method of error detection 

and correction. Hamming code can correct single bit errors occurring in data. 

Multi-bit errors in the same memory location are extremely rare and don’t pose 

much of a threat to memory systems. TMR memory, however, is able to repair 

two failing bits.  

The BIOS of some computers, and operating systems such as Linux, can count 

the number of memory errors detected and corrected, to report failing memory 

modules before the problem becomes catastrophic. 

Memory errors are proportional to the amount of RAM in a computer as well as 

the duration of operation. Since servers typically contain many GBs of RAM 

and are in operation 24 hours a day, the likelihood of memory errors is relatively 

high and hence they require ECC memory. 
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5.3.3 Virtualization availability 

All virtualization products provide failover clustering. Since the virtualization 

layer has no knowledge of the applications running on the virtual machine’s 

operating system, failover clustering on the virtualization level can only protect 

against two situations: 

• A physical hardware failure. 

• An operating system crash in a virtual machine. 

When a physical machine fails, the virtual machines running on that physical 

machine can be configured to restart automatically on other physical machines. 

And when a virtual machine crashes, it can be restarted automatically on the 

same physical machine.  

Some virtualization products provide monitoring of the operating systems from 

within the virtual machines’ operating system. For instance, VMware provides 

the VMware-tools application running inside the operating system of the virtual 

machine. It monitors, among other things, if the operating system is still 

working. When the operating system crashes, the VMware tools are not 

reachable anymore and VMware will restart the virtual machine automatically.  

Since failover clustering on the virtualization layer cannot protect against 

application failures (like a crashed application process or service), these should 

be handled by the operating system layer. See the chapter 12 on operating 

systems for more details.  

Both VMware (vSphere with HA/FT) and Citrix (XenServer with Marathon 

everRun) also provide lockstep technology to keep two virtual machines in sync, 

effectively providing redundant operating systems. This technology, however, 

has some technical limitations and uses quite a bit of network bandwidth. 

5.3.3.1 Admission 

To cope with the effects of a failure of a physical machine, a spare physical 

machine is needed. For this setup to work, all hypervisors are placed in a 

virtualization cluster, so they are aware of each other. The hypervisors on the 

physical machines check the availability of the other hypervisors in the cluster.  
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Figure 101: Using a spare physical machine 

In Figure 101, one physical machine is running as a spare to take over the load 

of any failing physical machine. Under normal conditions the spare server is not 

doing any work. 

 

 

Figure 102: Failing physical machine 

When one physical machine fails (Figure 102), the virtual machines running on 

it are automatically restarted on the spare physical machine. 

An alternative is to have all physical machines running at lower capacity. For 

instance, when 5 machines are in a virtualization cluster, and each machine 

could host ten virtual machines, the total load of all servers should be 4 × 10 =

40 virtual machines. Instead of having one spare server running, the workload 

can also be spread over all machines, each hosting 
40

5
= 8 virtual machines.  
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Figure 103: All machines used 

This way all resources are used as much as possible since the hypervisor will 

provide extra resources like RAM and CPU to the virtual machines 

automatically, even though it is still possible to handle a failure of a physical 

machine. In that case the four remaining physical machines still have the 

capacity to run 8 extra virtual machines and the virtual machines that ran on the 

failed physical machine can automatically be restarted on the other physical 

machines (Figure 104). 

 

 

Figure 104: Failing machine when all machines were used 
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5.4 Compute performance 

The performance of computers is dependent on the architecture of the server 

(which is described in earlier sections), the speed of the memory and CPU, and 

the bus speed. 

5.4.1 Moore's law 

Today, all computers use microprocessors as their Central Processing Unit 

(CPU). Before the invention of microprocessors, a single CPU was built using 

one or more circuit boards, containing large numbers of Integrated Circuits 

(ICs). Each IC contained from tens to a few hundred transistors.  

In 1971, Intel released the world's first universal microprocessor, the 4004. A 

microprocessor is nothing more than a very complex IC, combining the 

functions of all the individual ICs and the circuitry needed to create a CPU, 

effectively creating a processor on a chip. 

 

 

Picture 36: Intel 4004 microprocessor27 

The 4004 chip itself was 3 mm wide by 4 mm long and consisted of 2,300 

transistors. The chip was mounted in a DIP package with 16 connection pins 

(the DIP package was much larger that the chip itself of course). Coupled with 

one of Intel's other products, the RAM chip, the microprocessor allowed 

computers to be much smaller and faster than previous ones. The 4004 was 

capable of performing 60,000 instructions per second, which was about as much 

as the ENIAC computer that filled a complete room and weighed several tons. 

Since the introduction of the first CPU in 1971, the power of CPUs has increased 

exponentially. This makes today’s computers much more powerful than we 

could possibly have imagined forty years ago.  
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Moore's law states that the number of transistors that can be placed 

inexpensively on an integrated circuit doubles approximately every two years. 

This trend has continued for more than half a century now. The law is named 

after Intel’s co-founder Gordon E. Moore, who described the trend in his 1965 

paper "Cramming more components onto integrated circuits”28, when he 

worked at Fairchild. 

Over the years, the number of transistors on a CPU raised from 2,300 on the 

first CPU (the 4004 in 1971) to 100,000,000,000 (100 billion) on an Intel Alder 

Lake hybrid processor in 2022. This is an 43 million-fold increase! 

 

 

Figure 105: Moore's law 

Figure 105 clearly shows the trend. Please note that the vertical scale is 

logarithmic instead of linear, showing a 10-fold increase of the number of 

transistors in each step.  

Note that Moore's law only speaks of the number of transistors; not the 

performance of the CPU. The performance of a CPU is dependent on a number 

of variables, like the clock speed, the use of caches and pipelines, and the width 

of the data bus. When we look at the performance gain, we see a doubling of 

CPU performance every 18 months; even faster than what Moore's law states. 

Obviously, Moore’s law cannot continue forever, as there are physical limits to 

the number of transistors a single chip can hold. Today, the connections used 
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inside a high-end CPU have a physical width of 5 nm (nanometer). This is 

extremely small – the size of 24 atoms (the diameter of an atom is of the order 

of 0.21 nm29)!  

When designing an infrastructure, it sometimes makes sense to take Moore's law 

into account by not purchasing too much spare capacity in advance. By 

purchasing and implementing new servers "just in time", the purchased server 

will have twice the processing capacity of a server you could have purchased 18 

months earlier, for the same price. Therefore, to get the full benefits of Moore's 

law, the infrastructure (management) must be designed to handle just in time 

upgrades. 
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5.5 Popular operating systems 

5.5.1 z/OS 

One of the first operating systems was IBM's OS/360, introduced in 1964. It was 

a batch processing system, created for the IBM system/360 mainframe 

computer. Later, OS/360 MFT (Multitasking with a Fixed number of Tasks) and 

OS/360 MVT (Multitasking with a Variable number of Tasks) provided 

multitasking to mainframes. The successor of OS/360 was OS/370, which 

introduced the concept of virtual memory in 1972 (see section 11.2.5.4 for more 

information on virtual memory).  

MVS, released in 1974, was the primary operating system on the System/370 

and System/390. The 64-bit version of MVS for the zSeries mainframes was 

named z/OS and was introduced in 2000. IBM’s z/OS is now the most used 

mainframe operating system. It runs on IBM mainframes only. 

Extreme backward compatibility is one of z/OS's main design philosophies: 

programs written for MVS in 1974 can still run on today's z/OS without 

modification. 

Reading and writing a tremendous amount of data and performing relatively 

simple calculations on it (for example, "read in these 400,000 records of data, 

do 6 calculations on each, and then output 400,000 separate reports") is a typical 

use of mainframes running z/OS.  
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While z/OS is still most used for this type of batch processing, it can be used 

interactively as well. A system running z/OS can support thousands of 

interactive users simultaneously. 

z/OS doesn't always have the default settings that we take for granted on other 

systems. Most of the settings are to be set by systems managers. Many settings 

and details are site-specific, so a new user on a particular z/OS system needs to 

find his way around the system first in order to be able to work with it. 

5.5.2 IBM i (OS/400) 

IBM i is an operating system only used on IBM's Power Systems (previously 

called iSeries and AS/400 systems) midrange systems.  

In 1969, eight years after DEC introduced the PDP-1, IBM introduced its first 

minicomputer: The System/3. Because the system was relatively expensive and 

was less advanced than the DEC systems, the System/3 was never very popular. 

The IBM System/32, introduced in 1975, and its successor, the System/34, were 

also not very popular, but the System/38 (in 1978) and the System/36 (in 1983) 

were.  

Users found the System/36 and its operating system easy to use. IBM kept this 

in mind when designing the OS/400 operating system for the new series of 

AS/400 midrange systems. Over the years, the name of the operating system has 

changed from OS/400 to i5/OS to IBM i30. 

One of the biggest advantages of IBM i is its completeness. Communications, 

transaction processing, and system security were implemented as intrinsic parts 

of the operating system from the start. IBM i also has a relational database 

manager built in as an integral part of the operating system. Features for the 

implementation and maintenance of data security are implemented natively as 

part of the operating system. 

The latest version is known officially as IBM i 7.531. 

5.5.3 UNIX 

UNIX is a multitasking, multi-user operating system, originally created by 

AT&T. In 1969, at Bell Labs, Ken Thompson, Dennis Ritchie, and others got 

hold of a little-used PDP-7 system. They used the machine to create a new time-

sharing multi-user multitasking operating system, based on earlier work on a 

system called MULTICS.  

The first UNIX version was written entirely in PDP assembler, which made it 

highly dependent on the hardware. In 1973, UNIX was rewritten in the new C 

programming language (C was also created by Dennis Ritchie, together with 
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Brian Kernighan, which makes UNIX and C are very much related to each 

other). This made UNIX portable to multiple types of computer hardware.  

In 1975, version 6 was the first to be widely available outside of Bell Labs (later 

AT&T). In 1982, UNIX was licensed to a number of computer manufacturers, 

including Sun Microsystems and Hewlett-Packard. Most of these vendors 

started to market their own UNIX versions based on the original UNIX source 

code. They adapted the code to meet their own hardware and software 

requirements.  

In early 1993, AT&T sold its UNIX System Laboratories to Novell. In 1994 

Novell transferred the rights to the UNIX trademark and the specification to The 

Open Group. Subsequently, it sold the source code and the product 

implementation (called UNIXWARE) to SCO. 

Because UNIX is written almost entirely in the C programming language, and 

because the source code is published, it has been ported to a wide variety of 

machine architectures.  

Originally, AT&T registered "UNIX" as a trademark, so although anyone could 

create their own version of UNIX and market it, they were not allowed to call it 

UNIX. As a result, vendors came up with different names for their UNIX 

flavors: 

 

Vendor UNIX flavor 

IBM AIX 

Oracle/Sun Solaris 

HP HP-UX 

Apple 
Mac OS X (built on FreeBSD, 

discussed in the next section) 

Table 21: UNIX flavors 

These versions are 90% the same, but have some minor differences, like the 

wording of error messages, the order of commands used to start up the machine, 

or the location of certain files. 

Each of these flavors needs specific hardware. HP-UX only runs on HP Integrity 

systems, and these systems cannot run for example AIX. 

Applications running on a particular flavor of UNIX cannot run on another 

flavor without (at least) recompiling. This means that software vendors must 

provide separate versions of their applications for each flavor of UNIX. 

UNIX popularized the hierarchical file system with nested subdirectories, a 

feature now implemented in most other operating systems as well. All files and 

directories appear under the so-called root directory "/", even if they are stored 



Error! Use the Home tab to apply Kop 1 to the text that you want to 

appear here. 

  

 

104 

on different physical disks. UNIX has no concept of drive letters; drives are 

mounted on a branch in the directory tree, providing disk space for that 

particular branch. 

The UNIX philosophy is to use a large set of small tools that do only one thing, 

and do it very well. To perform complicated tasks, commands can be combined 

using a system called pipes. Pipes feed the output of one command to the input 

of another command, without storing the intermediate result. For instance, the 

UNIX command: 

ls | sort 

prints a sorted list of files on the screen. The pipe sign “|” ensures that the output 

of the “ls” command is routed (as input) to the “sort” command. Since after the 

sort command there is no further pipe specified the final output is send to the 

standard output system: the screen.  

Of course, this is a very simple example. In practice these chains of piped 

commands can get very long and complex. 

In UNIX, everything is treated as a file, even printers, modems, the keyboard 

and the screen. This allows piped commands, for instance, to use typed input 

from the keyboard, process them using some application, and have the output 

send automatically to a printer.  

5.5.4 Linux 

Linux is a UNIX-like operating system, but is not derived from the UNIX source 

code. Instead, it was developed independently by a group of developers in an 

informal alliance on the internet as a free operating system for the x86 platform. 

In 1987, Andrew Tanenbaum, who was a professor of computer science at the 

Vrije Universiteit, Amsterdam in the Netherlands, wrote a clone of UNIX, called 

MINIX, for the IBM PC. He wrote MINIX especially for his students to teach 

them how an operating system worked. Tanenbaum wrote a book32 that not only 

listed the 12,000 lines of MINIX source code, but also described each important 

part of the source code in detail, including the theory about why it was 

programmed the way it was. 

Linus Torvalds, at the time a student at the University of Helsinki, studied 

MINIX in an operating system course and bought a PC to try it. In 1991, 

Torvalds wanted to explore the multitasking possibilities of the new Intel 80386 

CPU in his PC and decided to create a small multitasking, multi-user operating 

system himself with the help of the internet community. On USENET, he asked 

developers on the internet to help him with the development33. Because of the 

open source nature of Linux many developers contributed with kernel patches, 

device drivers, and additions like multilingual keyboards, floppy disk drivers, 

support for video card devices, and much more. 
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It is important to understand that Linux is actually only an operating system 

kernel. Today’s Linux distributions consist of the Linux kernel and its drivers, 

and the GNU project’s applications, libraries, compilers, and tools.  

The GNU project (GNU is a recursive acronym for “GNU's Not UNIX!”) was 

launched in 1984 by Richard Stallman, to develop a free UNIX-like operating 

system. By 1990, the GNU project had recreated all the major components of 

the UNIX-like system except one – the kernel. Combining Linux with the 

almost-complete GNU system resulted in a complete operating system: the 

GNU/Linux system.  

Linux and the GNU tools are licensed under the GNU General Public License, 

ensuring that the all source code will be free for all to copy, study, and to change.  

Soon, commercial vendors showed interest. Linux itself was, and still is, free. 

What the vendors did was compiling the source code, adding some tools and 

configurations of their own, and releasing it in a distributable format. Red Hat, 

SuSe, Ubuntu and Debian are some of the best-known Linux distributions. 

Extended with Graphical User Interfaces (like KDE or GNOME), user-friendly 

Linux distributions became very popular. 

Today Linux is a very mature operating system. Companies like Red Hat and 

SUSE sell professional Linux distributions including support contracts.  

Linux is used everywhere – in servers, workstations, mobile devices, all Android 

smartphones, and appliances like set-top boxes, firewalls and NAS devices. 

Almost all of the internet services run on Linux. Ninety-five per cent of the 

supercomputers listed in the top 500 list of the fastest computers in the world34 

are running Linux. 

While Linux typically runs on x86 servers or ARM based devices, some Linux 

distributions can be used on IBM mainframes, running in virtual machines.  

Since Linux’s design is derived from UNIX’s design, Linux commands and 

scripts are to a large degree similar to those of UNIX. Linux not only uses the 

same (well-known) commands, but also the same file structure, scripting 

language, pipes, etc. This allows experienced UNIX systems managers to use 

Linux without the need for much extra knowledge. Porting systems from UNIX 

to Linux is therefore generally much easier than porting them to for instance 

Windows. 

5.5.4.1 Linux support 

Linux is created as an open source project. This means that the source code of 

Linux is published and freely available. While this allows users to change the 

source code to their needs, this is hardly ever done, due to the complexity of the 

Linux source code and the limited benefits of changing the code.  
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Most organizations demand professional support for their software. And 

although Linux can be downloaded from the internet for free, professional 

support is certainly not free. Most Linux distribution vendors, like Red Hat and 

SUSE, and some independent vendors, offer support contracts for Linux. 
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6.1 Introduction 

Humans interact with applications using end user devices. Typical end user 

devices are desktop PCs, laptops, virtual desktops, mobile devices like phones 

and tablets, and printers. 

 

 

Figure 120: End user devices in the infrastructure model 
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The first end user devices were teletypes. Teletypes were electromechanical 

typewriters that provided a user interface to early computers, sending typed data 

to the computer and printing the response. 

 

 

Picture 37: Teletype35 

Later, electronic terminals replaced the teletypes. Terminals provided a monitor 

screen instead of printed paper, allowing full screen editing and instant output. 

Terminals were “dumb”, as they did not have their own processing power. They 

relayed typed-in commands to the mainframe or midrange computer and the 

computer sent data back to the terminal to be displayed. Terminals were used 

for decades to interact with mainframe and midrange computers. 

In 1981, IBM introduced the Personal Computer (PC). The IBM PC became the 

de facto end user device in many office environments, allowing office workers 

to have full control over their own computer for the first time.  

 



Error! Use the Home tab to apply Kop 1 to the text that you want to 

appear here. 

  

 

109 

 

Picture 38: The original IBM PC-XT36 

IBM developed the PC in about a year. To achieve this, they decided to build 

the machine with "off-the-shelf" parts from a variety of manufacturers. They 

also decided on an open architecture, enabling other manufacturers to produce 

and sell peripheral components and compatible software without having to 

purchase licenses. IBM even sold an IBM PC Technical Reference Manual 

which included complete circuit diagrams and a listing of the ROM BIOS source 

code.  

The result was that many parties copied the PC – the so-called PC clones. These 

clones (or IBM-compatible PCs) used the same architecture, used the same 

chipset as the IBM PC, and used reversed-engineered BIOS software (because 

even though the source code was published, it was still copyrighted). This 

allowed clones to run unmodified IBM software. One of the first and most 

successful companies building clones was Compaq, which would later become 

part of HPE. 

All of the IBM PC software was developed by third parties. The most influential 

one being Microsoft that provided the DOS operating system and office tools 

like Word and Excel.  

IBM was a major computer manufacturer long before the introduction of the PC. 

Apple, on the other hand, was founded by two hobbyists. In 1984, Apple 

introduced the Apple Macintosh. It was the first commercially successful 

personal computer to feature a mouse and a GUI rather than a command line 

interface. It was designed to be used by consumers, and not as an office tool.  
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Both the Mac and the PC evolved over time to become much faster. Color video 

screens and sound boards became the norm, and laptops became the most used 

form factor.  

6.2 End user device building 
blocks 

End user devices can be categorized as:  

• Desktop PCs 

• Laptops 

• Virtual desktops 

• Mobile devices 

• Printers  

All of these categories are discussed in the following sections. 

6.2.1 Desktop PCs and laptops 

The most used end user devices today are desktop and laptop computers based 

on Intel’s x86 architecture, mostly referred to as PCs. While Apple iMacs also 

run on the x86 platform, according to Statcounter37, Microsoft Windows is the 

most used operating system for desktop and laptops at 76%, followed by Apple's 

macOS at 16%, and Linux-based operating systems at 5%. 

Over the years, PCs have become very powerful. This enables them to run 

complex software and to store relatively large amounts of data. But because of 

the sheer complexity of the PC itself, the very advanced operating systems, the 

amount of locally installed software, and the performance, availability, and 

security issues related to all of these aspects, many organizations are searching 

for more cost-effective and simple solutions. 

But people are attached to their PCs. The term personal computer is still correct 

– most users feel their PC is their personal tool that systems managers should 

not tamper with. This is one of the main reasons why the adoption of alternatives 

like thin clients (see 13.3.4) has never been as successful as it could have been. 

Nowadays, most laptops are as powerful as desktop PCs. And because users can 

take them home or use them on the road, they are even more "personal" than 

desktops. Laptops, however, have some disadvantages compared to desktop 

PCs, like: 
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• Laptops frequently get lost or stolen. On average, 10% of the laptops 

are lost or stolen during their life cycle38. These laptops must be 

replaced, the user cannot work in the meantime, and data on the 

laptop that was not backed-up is lost. 

• Laptops break more easily than desktops, because they are more 

vulnerable to drops, bumps, coffee spills, etc. 

• Since most laptops are taken home every night, the chance of illegal 

or malicious software being installed on the laptop is much higher 

than on a desktop PC in the office.  

When used in the office, laptops are often connected to a docking station (also 

known as a port replicator) using a USB-C cable. The docking station provides 

a number of external ports for connecting a keyboard, mouse, camera, speakers, 

and microphone, as well as one or more displays. The USB-C cable can also 

charge the laptop’s battery when the laptop is connected to the docking station.  

6.2.2 Mobile devices 

Mobile devices in the context of this book are devices that connect to the IT 

infrastructure using wireless public or public Wi-Fi networks. Typical mobile 

devices are smartphones, tablets, and smart watches. 

While the computing power of some mobile devices is getting comparable to 

desktop and laptop computers, mobile devices have some specific properties 

that infrastructure architects must be aware of. 

Mobile devices typically connect to the IT infrastructure using public networks 

based on for example LTE technology (as explained in 9.3.3.6). The bandwidth 

of these connections is lower than that of Wi-Fi and wired Ethernet connections. 

Also, connection speed can heavily fluctuate as the users move around, and it 

sometimes can fluctuate quite fast when the mobile device is used inside a car 

or train. The reliability of the connections is therefore worse than that of Wi-Fi 

or wired Ethernet connections. When moving around, connections sometimes 

drop for short periods of time or drop altogether. Signal noise can force 

resending large numbers of network packets. Apps running on mobile devices 

are specially designed to handle these characteristics. 

Another limitation of mobile devices is the small form factor forcing limited 

keyboard and screen sizes. Applications’ user interfaces must be re-engineered 

to handle these smaller sizes.  
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6.2.3 Bring Your Own Device (BYOD) 

In many cases, organizations use standard PCs or laptops with a limited set of 

business software. In contrast, users at home have access to fast, sexy laptops of 

the brand they like, tablets and smart phones that allow them to run thousands 

of highly attractive apps and they have fast broadband internet connections at 

home that are often faster than the shared network in the office. 

To attract new employers and because people will take their personal device to 

the office anyway, most organizations are now confronted with a concept called 

Bring Your Own Device (BYOD). 

BYOD allows people to bring personally owned – typically mobile – devices to 

the office, to use them to access the organization’s applications and data, as well 

as their personal applications and data. 

The BYOD concept creates a conflict of interests. To optimize stability of the 

organization’s infrastructure and security, systems managers need to fully 

control the end user device, while the owners of the devices want full freedom. 

And since the user paid for the device (they brought their own device), it will 

not be acceptable for users to have systems managers erase the device (including 

all family photos) in case of an incident, or to have personal data visible to the 

systems managers.  

Virtualization techniques can be used to create isolated environments on these 

devices. Some solutions implement a hypervisor on the device that runs two 

virtual machines: 

• One virtual machine that has access to the organization's data and 

applications and is fully managed by the organization's systems 

managers. This virtual machine is managed using Mobile Device 

Management (MDM) software that can monitor, maintain and secure 

the virtual machine. If necessary, the organization's managed virtual 

machine can be wiped remotely to remove all sensitive data. 

• One virtual machine that is owned and managed by the end user. This 

machine runs whatever applications the user wants (browsers, social 

network clients, games, streaming music players, video players, etc.). 

Both virtual machines use the same underlying hardware like network 

connectivity, touch screen, GPS, compass, and the sound system. But since both 

virtual machines are run on top of a hypervisor, no sensitive data will be 

available from the user’s managed virtual machine. 
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6.2.4 End user authorizations and 
awareness 

End users should not be able to remove important software or alter system files 

or log files on their devices. Therefore, they should not have (access to) the 

administrator password of their device. When users need to install software 

(which is a frequent requirement in practice, especially in developer 

environments), they could be given the right to do so, without giving them the 

administrator password of their device 

BIOS passwords should be used on laptops and desktops to further increase 

security. BIOS settings should be applied to prevent booting from USB memory 

devices. 

But the security issue with end user devices is not so much a matter of the device 

as it is a matter of the end user. Users need to be aware of common security 

guidelines including the possibility of social engineering, using strong 

passwords and knowing how to handle sensitive data. 
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PART IV 
 –  

INFRASTRUCTURE 
MANAGEMENT 

 

 

 

We live in a society exquisitely dependent on science and technology, in 

which hardly anyone knows anything about science and technology. 

Carl Sagan, American astronomer, 1990 
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7.1 Introduction 

Where the chapters in Part III were about technological infrastructure building 

blocks, this part IV is about the systems management processes. It explains the 

various ways infrastructure can be deployed, the steps to deploy an 

infrastructure, how automation can replace manual configuration, and how to 

manage the infrastructure and deploy applications. Finally, it describes the steps 

to decommission an infrastructure at the end of its life cycle. 
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Figure 126: Infrastructure management 

This chapter discusses how to select the best deployment option for an 

infrastructure. 

7.2 Hosting options 

Infrastructure can be hosted on-premises, in a colocation, deployed in a public 

cloud, or the full infrastructure management can be outsourced. 

With on-premises hosting, infrastructure components run on the premises of 

the organization using the infrastructure. This can be in the datacenter of an 

existing building, or in a dedicated, specially designed datacenter building. 

As the datacenter is implemented in an organization owned building, the 

building must have enough space, an uninterruptable power supply (UPS), 

options to install sufficient cooling, fire prevention and detection, external 

redundant network capabilities with enough bandwidth, and sufficient floor 

loading capacity (see section 8.2.4.1 for more details on datacenter 

requirements). 

Two major drawbacks of on-premises hosting are: 

• Typically, on-premises datacenters don’t scale well, especially if they 

are embedded in existing (office) buildings.  

• As the organization owns and runs their own datacenter, it must have 

enough knowledge and staff available to manage the datacenter. 
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In contrast, a colocation is a third party dedicated datacenter where racks, floor 

space, and network bandwidth can be rented. A colocation provides power, 

cooling, and physical security, and hosts and connects customer owned 

infrastructure components. Colocation racks are empty – all infrastructure 

components must be provided and managed by the organization renting the 

colocation racks.  

Organizations can also choose to use public cloud computing. Depending on 

the deployment model chosen, the organization delegates more or less systems 

management. With IaaS, the organization has to do most of the management 

itself, while with SaaS it has to manage the least. 

An organization can also decide to outsource their entire infrastructure. Full 

infrastructure outsourcing is a subcontracting service in which some third-party 

purchases, deploys, hosts, and manages the infrastructure, and performs its 

lifecycle management. The outsourcing is managed using Service Level 

Agreements and typically has a very rigid change management process. 

Outsourcing frees the organization from investing in hardware – only leaving 

operational cost. The outsourcing organization must have a demand 

organization and process in place in order to manage the outsourcing party, but 

it can be freed from internal infrastructure systems managers. 

7.3 (Hyper) Converged 

Infrastructure 

In a traditional infrastructure deployment, compute, storage and networking are 

deployed and managed independently, often based on components from 

multiple vendors. In a converged infrastructure, the compute, storage, and 

network components are designed, assembled, and delivered by one vendor and 

managed as one system, typically deployed in one or more racks. 

A converged infrastructure minimizes compatibility issues between servers, 

storage systems and network devices while reducing costs for cabling, cooling, 

power and floor space. Scaling up a converged infrastructure requires the 

deployment of additional racks. 

Where in a converged infrastructure the infrastructure is deployed as individual 

components in a rack, a hyperconverged infrastructure brings together the same 

components within a single server node.  

A hyperconverged infrastructure (HCI) comprises a large number of identical 

physical servers from one vendor with direct attached storage in the server and 

special software that manages all servers, storage, and networks as one cluster 

running virtual machines. The technology is easy to expand on-demand, by 

adding nodes to the hyperconverged cluster. 
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Hyperconverged systems are an ideal candidate for deploying VDI 

environments (see section 13.3.3), because storage is close to compute (as it is 

in the same box) and the solution scales well with the rise in the number of users. 

A big advantage of converged and hyperconverged infrastructures is managing 

only one vendor, that provides hardware, firmware, and software. Vendors of 

hyperconverged infrastructures make all updates for compute, storage and 

networking available in one service pack and deploying these patches is 

typically much easier than deploying upgrades in all individual components in 

a traditional infrastructure deployment. 

Drawbacks of converged and hyperconverged infrastructures are: 

• Vendor lock-in – the solution is only beneficial if all infrastructure is 

from the same vendor. 

• Scaling can only be done in fixed building blocks – if more storage 

is needed, compute must also be purchased. This can have a side 

effect: since some software licenses are based on the number of used 

CPUs or CPU cores, adding storage also means adding CPUs and 

hence leads to extra license costs. 

7.4 Private cloud 

A private cloud, also known as a software-defined datacenter (SDDC), is an 

architecture in which all infrastructure resources – compute, storage and 

networking – are virtualized, and can be configured using software APIs.  
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Figure 127: Private cloud 

As shown in Figure 127, a private cloud is an enterprise infrastructure, where 

all resources are virtualized and managed by automation and orchestration 

software. A private cloud is not a cloud in the pure sense of the word – it has 

limited scaling and there is no pay per use – but its software is comparable to 

IaaS services of public clouds.  

A private cloud is characterized by automation, orchestration, and abstraction 

of resources into software and code. By nature, code is more reliable than 

humans, which means that compared to a traditional datacenter, a private cloud 

is more secure and more agile. Changes are managed by an automated 

workflow, where an orchestrated change can lead to a number of automated 

changes in various resources. 

A private cloud enables developers, DevOps teams and systems managers to 

create and deploy new infrastructures using either a manual self-service portal, 

or a combination of a build server and APIs. It allows the user to request the 
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desired infrastructure components, their sizing to meet performance demands, 

and their required availability; and automatically configures the private cloud 

components to deliver a secured infrastructure implementation. The private 

cloud software also provides tools for costing, logging, reporting, scaling (up 

and down), and decommissioning of the infrastructure resources. 

Examples of private cloud automation and orchestration products are 

OpenStack’s Horizon, IBM Cloud Orchestrator, and VMware vRealize. 

A private cloud is not the solution for all problems – there are many applications 

that need a much more custom-designed infrastructure than the standard private 

cloud building blocks can deliver. Examples of these applications are SAP 

HANA, high performance databases, OLTP, high secure bank or stock trade 

transaction systems, and SCADA systems. 

7.5 Public cloud 

An organization may choose to build their entire infrastructure in – or migrate 

to – a public cloud provider. Especially in the case of a green field situation, 

such as a startup company, hosting the entire virtual infrastructure in the public 

cloud could be a viable option. Usually one of the major cloud providers is 

chosen, such as Amazon's AWS, Microsoft Azure or Google’s GCP.  

Another good reason to move to the public cloud is the use of innovative 

technology. Cloud providers can innovate much faster than most other 

organizations due to their scale and financial buffers. Customers can easily take 

advantage of these innovations, which not only become available quickly, but 

are also immediately production-ready. 

7.6 Hybrid cloud 

Most organizations do not choose to migrate all of their existing infrastructure 

to the public cloud at once. Over the years, many organizations have built a very 

complex landscape of infrastructure components, applications, and connections 

that cannot be moved overnight. In many cases, it is not cost effective to migrate 

an entire datacenter as-is via a lift and shift migration, which typically results in 

high cloud operating costs. In addition, the organization receives little value 

from the cloud migration. As a result, a phased approach is often taken, with 

some of the infrastructure remaining on-premises and some migrated to the 

public cloud. Because the on-premises components need to communicate with 

the components in the public cloud, a connection must be established between 

the on-premises datacenter and the public cloud provider. This is called a hybrid 

cloud.  
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A hybrid cloud often remains in place for several years, because it can take a 

long time to completely phase out the on-premises environment for a variety of 

reasons. 

Some drawbacks of a hybrid cloud are that knowledge of both the existing on-

premises environment and the new cloud environment must be present and 

maintained, and there is a combination of pay-as-you-go costs in the cloud and 

investment and licensing costs in the on-premises environment. 
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8.1 Introduction 

Until a few years ago, most servers, storage, and networks were configured 

manually. Systems managers installed hardware in racks, installed operating 

systems from installation media, added libraries and applications, patched the 

system with the latest software versions, and configured the software for that 

specific installation. However, this approach is slow, error-prone, and not easily 

repeatable. It introduces variations in server configurations that should be the 

same and makes the infrastructure very difficult to maintain. 

An alternative is to automatically create and configure servers, storage, and 

networking, a concept known as infrastructure as code. 

8.2 Infrastructure as code 

Infrastructure as Code (IaC) is a way to deploy and manage infrastructure 

components based on a programming language, similar to how software 

developers write code to create applications. 

IaC tools allow developers to define the desired state of their infrastructure in a 

programming language, which is then used to provision and manage 

infrastructure resources. This approach ensures that the infrastructure is 

consistent and can be deployed in a repeatable manner.  

With IaC, deployment speeds are increased and greater consistency and 

reliability are achieved with fewer errors.  

8  
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By treating infrastructure like code, organizations can automate the 

management of their infrastructure, enabling them to respond more quickly to 

changing business needs and reduce the risk of human error. 

8.2.1 Declarative vs imperative 
languages  

Computer code can either be declarative or imperative in nature. 

• Imperative programming describes how to achieve a certain result by 

defining a sequence of steps. The focus is on how the program should 

accomplish a task. 

• Declarative programming describes what the program should 

accomplish without defining the exact steps to get it done. 

Declarative programming languages focus on the end result, rather 

than how to achieve it.  

Unlike most ordinary programming languages, such as C, Java and Python, most 

IaC languages are declarative. The IaC code describes what the infrastructure 

should look like, and executing the code deploys the infrastructure as described. 

This makes the code an important part of infrastructure documentation. It allows 

all systems managers to read how the entire infrastructure is put together. 

If a change is made to the code, for example when a new VM is inserted into 

the code base, the IaC tool will check the state of the running infrastructure and 

compare it to the desired state as described in the code. In this example, it will 

determine that an additional VM is needed and will deploy only that new VM.  

8.2.2 Versioning 

To keep track of changes to software code over time, developers use version 

control systems. In these systems, files of software code are stored in 

repositories. A repository automatically creates a new version of the code when 

code is pushed to the repository. All previous versions remain available, 

enabling the retrieval of a previous version of a file if necessary. The repository 

is generally used by multiple developers, with each developer writing or 

maintaining part of the code.  

IaC also benefits from version control systems. Git, GitHub and GitLab are the 

most widely used tools for version control. 

• Git is a distributed version control system with a standalone 

command line interface tool, that provides features like branching, 

merging, and committing changes to code. 
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• GitHub is a web-based platform for hosting Git repositories. It 

provides a graphical interface for creating, managing, and sharing Git 

repositories. 

• GitLab provides features similar to GitHub, but can be self-hosted. 

8.2.3 Commonly used IaC languages 

There are several commonly used IaC languages. Below are some of the most 

popular ones: 

Terraform is a popular open-source tool and Domain-Specific Language (DSL) 

for building, changing, and versioning infrastructure. Terraform is cloud 

agnostic, which means that it has a generic syntax can be used to configure a 

wide range of cloud providers and infrastructure platforms, including AWS, 

Azure, GCP, Kubernetes, Red Hat OpenShift, databases like MySQL and 

PostgreSQL, firewalls, and more. But it must be noted that each platform needs 

its own configuration details – in Terraform, configuring an EC2 VM in AWS 

is done differently than configuring a VM in Azure.  
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IS 2020.3 Curriculum 

reference matrix 

The IS 2020 is a Competency Model for Undergraduate Programs in 

Information Systems from the Association for Computing Machinery (ACM). 

It contains several competence areas, including IT Infrastructure (competence 

area 3). IS 2020.3 based courses39 offer an introduction to IT infrastructure 

topics for students majoring in Information Systems. It provides the students the 

knowledge and skills that they need for communicating effectively with 

professionals whose special focus is on hardware and systems software 

technology and for designing organizational processes and software solutions 

that require in-depth understanding of the IT infrastructure capabilities and 

limitations. 

This book covers all topics that are part of the IS 2020.3 curriculum. The 

matrices in this appendix specify the relationship between the IS 2020.3 

curriculum competences and the sections in this book. 

Competency 1 

Explain key infrastructure concepts, including how it functions, how to define 

critical functions, and how to plan and manage infrastructure. 

 

Topic Section in this book 

Individual components of IT 

infrastructure 
2, 2.5 

Functions of IT infrastructure All chapters 8, 9, 10, 11, 12, 13 

Plan and manage IT infrastructure 14, 17, 18, 19, 20 

Organizing structures and processes 14, 17, 18, 19, 20 

Role of IT infrastructure in business 1.2, 2.6 
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Competency 2 

Explain the principles of layered network architectures. 

 

Topic Section in this book 

Layers of the TCP/IP protocol suite 9.3.4.1, 9.3.5.1 

Layers of the OSI model 9.3.1 

Duties of each layer of TCP/IP protocol 

suite 

9.3.4.2, 9.3.4.3, 9.3.4.4, 

9.3.4.5, 9.3.4.6, 9.3.5.2 

Duties of each layer of OSI model Par 9.3.2 to 9.3.8 

Network security 9.7 

 

Competency 3 

Explain the components of IT infrastructure solutions from client/server, 

network hardware, (including wireless and wired). 

 

Topic Section in this book 

Components of a network 9.5.1, 9.5.2 

Components of Client/server 2.3 

Wired networks 
9.3.2.1, 9.3.2.2, 9.3.2.3, 

9.3.2.4, 9.3.3.2 

Wireless protocols 9.3.3.3, 9.3.3.6 

 

Competency 4 

Explain the principles of network software and configuration. 

 

Topic Section in this book 

Configuration and setup processes on 

network hardware, software and other 

supporting devices and components 

17 

Four types of computer networks, LAN, 

WAN, PAN, MAN 
9.3.3.1 

Network topologies: Mesh, Star, Bus, 

Ring, Hybrid 
9.2 
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Competency 5 

Explain network protocols and their configuration. 

 

Topic Section in this book 

Transmission Control Protocol (TCP) 9.3.5.1 

Internet Protocol (IP) 9.3.4.1, 9.3.4.2, 9.3.4.3 

User Datagram Protocol (UDP) 9.3.5.1 

Post office Protocol (POP) 9.3.8.5 

Simple mail transport Protocol (SMTP) 9.3.8.6 

File Transfer Protocol (FTP) 9.3.8.7 

HyperText Transfer Protocol (HTTP) 9.3.8.8 

HyperText Transfer Protocol Secure 

(HTTPS) 
9.3.8.8 

 

Competency 6 

Explain security principles as they pertain to networks. 

 

Topic Section in this book 

Basic forms of system attacks 7.3, 7.1.2, 7.1.3, 7.1.3, 7.2 

Access control to computers and 

networks 
7.5.1.6 

Techniques to make data secure 7.1.1, 9.7 

Strengths and weaknesses of 

passwords 
7.5.1.6 

Basic features of cryptography 7.5.1.7 

Firewalls and types of firewall 

protection 
9.7.2 

Techniques to secure wireless 

communication 
9.3.3.3 

Advantages of a security policy 7.5.1.1 
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Competency 7 

Examine and critique IT infrastructure for organizations. 

 

Topic Section in this book 

Infrastructure components All chapters 8, 9, 10, 11, 12, 13 

Infrastructure planning 14, 17, 18, 19, 20 

Continuity planning 5.4.5 

 

Competency 8 

Examine and critique IT server architecture (both physical or cloud-based). 

 

Topic Section in this book 

Server Components 11 

Cloud configuration 3 

 

Competency 9 

Explain concepts of Enterprise Architecture. 

 

Topic Section in this book 

Foundations of TOGAF 18.2.1 

Foundations of ITIL 18.2.2 
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