

Sjaak Laan

IT Infrastructure Architecture

Infrastructure Building Blocks and

Concepts

4th Edition

Title: IT Infrastructure Architecture –

 Infrastructure Building Blocks and Concepts

 4th Edition

Author: Sjaak Laan

Publisher: Lulu Press Inc.

ISBN: 978-1-4477-8560-6

Edition: 4th edition, 2023

Copyright: © Sjaak Laan, 2023

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior permission of the author.

The views expressed in this document are those of the author and not necessarily

of his employer or his clients.

3

Trademarks

All trademarks used in this book are the property of their respective owners.

• AIX is a trademark of IBM Corp., registered in the U.S. and other

countries.

• ArchiMate is a registered trademark of The Open Group.

• AWS (Amazon Web Services) is a trademarks of Amazon.com, Inc.

or its affiliates in the United States and/or other countries.

• AMD Opteron, the AMD logo, the AMD Opteron logo are

trademarks or registered trademarks of Advanced Micro Devices.

• Apache®, Apache Tomcat, and Apache Mesos are either registered

trademarks or trademarks of the Apache Software Foundation in the

United States and/or other countries. No endorsement by The Apache

Software Foundation is implied by the use of these marks.

• Apple, Mac, iOS, and Mac OS are trademarks of Apple Inc.,

registered in the U.S. and other countries.

• Cisco is a registered trademark of Cisco in the U.S. and other

countries.

• Citrix, XenServer, XenMotion XenServer Marathon everRun,

MetaFrame Presentation Server, XenApp, and XenDesktop are

trademarks of Citrix Systems, Inc. and/or one or more of its

subsidiaries, and may be registered in the United States Patent and

Trademark Office and in other countries.

• DEC™, DECnet™, VMS™, and VAX™ are trademarks of Digital

Equipment Corporation.

• Docker and the Docker logo are trademarks or registered trademarks

of Docker, Inc. in the United States and/or other countries. Docker,

Inc. and other parties may also have trademark rights in other terms

used herein.

• Gartner Hype Cycle is a registered trademark of Gartner, Inc. and/or

its affiliates and is used herein with permission. All rights reserved.

4

• Google, Android, Google App Engine, and Kubernetes are registered

trademarks of Google Inc

• HP and HPE are a registered trademark of Hewlett-Packard Company

in the U.S. and other countries.

• IBM, AIX, IBM MQ, DB2, and ibm.com® are trademarks or

registered trademarks of International Business Machines

Corporation in the United States, and/or other countries.

• Intel, Intel Core, Xeon, and Thunderbolt are trademarks of Intel Corp.

in the U.S. and other countries.

• IOS is a trademark or registered trademark of Cisco in the U.S. and

other countries.

• Java and all Java-based trademarks are trademarks of Oracle, Inc. in

the United States, other countries, or both.

• Linux is a registered trademark of Linus Torvalds.

• Microsoft®, Hyper-V, Windows, Windows NT®, Microsoft Azure

Cloud Service, Windows .Net, Microsoft Internet Information

Services, BizTalk, Microsoft SQL Server, and the Windows logo are

trademarks of Microsoft Corporation in the United States and other

countries.

• Oracle, Sun Microsystems, and Java are registered trademarks of

Oracle Corporation and/or its affiliates.

• The Pivotal CloudFoundry trademark is the property of Pivotal

Software, Inc. and its subsidiaries and affiliates (collectively

“Pivotal”).

• PowerPC™ and the PowerPC logo™ are trademarks of International

Business Machines Corporation.

• Red Hat Enterprise Linux and Red Hat JBoss are trademarks of Red

Hat, Inc. in the United States and other countries.

• SPEC® is a registered trademark of the Standard Performance

Evaluation Corporation (SPEC). See http://www.spec.org for more

information.

• TOGAF is a registered trademark of The Open Group in the United

States and other countries.

• UNIX is a registered trademark of The Open Group in the United

States and other countries.

5

• VMware, VMware tools, VMware Workstation, VMware Fault

Tolerance, Sphere, GSX, ESX, ESXi, vCenter, and VMotion are

registered trademarks or trademarks of VMware, Inc. in the United

States and/or other jurisdictions.

Other company, product, or service names may be trademarks or service marks

of others. All terms mentioned in this book that are known to be trademarks or

service marks have been appropriately capitalized.

While every precaution was made in the preparation of this book, the author can

assume no responsibility for errors or omissions. If you feel the author has not

given you proper credit or feel your rights were violated, please notify the author

so corrective actions can be taken.

Pictures used in this book are created by the author of this book or are freely

distributable pictures, retrieved from the internet. Most of the used pictures are

from the public domain. When a picture is used that contained copyrights, a link

to the source of the picture and its copyright notice is provided. If you feel a

picture used in this book is not freely distributable, or any other copyright is

violated, please inform the author, so it can be corrected in the next version of

the book.

7

Table of Contents

Introduction ... 23

Preface ... 25

PART I - INTRODUCTION TO IT INFRASTRUCTURE 31

1 The definition of IT infrastructure 33

1.1 Introduction ... 33

1.2 What is IT infrastructure? 33

1.3 What is IT architecture? ... 35
1.3.1 Solution architects ... 36
1.3.2 Domain architects .. 36
1.3.3 Enterprise architects .. 37

2 The infrastructure model 39

2.1 IT building blocks ... 39

2.2 Processes / Information building block 41

2.3 Applications building block 42

2.4 Application Platform building block 43

2.5 Infrastructure building blocks 44

2.6 Non-Functional attributes....................................... 46

3 Cloud computing and infrastructures 47

3.1 Cloud definition .. 48

3.2 Cloud characteristics .. 49

3.3 Cloud deployment models 50

3.4 Cloud service models .. 50

3.5 Infrastructure as a Service (IaaS) 52

8

3.6 Edge computing .. 53

PART II – NON FUNCTONAL ATTRIBUTES 55

4 Introduction to Non-functional attributes 57

4.1 Introduction ... 57

4.2 Non-functional Requirements 58

5 Availability concepts ... 61

5.1 Introduction ... 61

5.2 Calculating availability .. 62
5.2.1 Availability percentages and intervals 62
5.2.2 MTBF and MTTR .. 64
5.2.3 Some calculation examples 66

5.3 Sources of unavailability ... 68
5.3.1 Human errors ... 68
5.3.2 Software bugs .. 70
5.3.3 Planned maintenance .. 70
5.3.4 Physical defects .. 71
5.3.5 Environmental issues ... 73
5.3.6 Complexity of the infrastructure................................ 73

5.4 Availability patterns ... 74
5.4.1 Redundancy ... 75
5.4.2 Failover ... 75
5.4.3 Fallback ... 75
5.4.4 Availability in the cloud .. 76
5.4.5 Business Continuity ... 77

6 Performance Concepts .. 81

6.1 Introduction ... 81

6.2 Perceived performance ... 82

6.3 Performance during infrastructure design 84
6.3.1 Benchmarking .. 85
6.3.2 Using vendor experience .. 85
6.3.3 Prototyping .. 85
6.3.4 User profiling .. 87
6.3.5 Scalable cloud environments 89

6.4 Performance of a running system 89
6.4.1 Managing bottlenecks .. 89
6.4.2 Performance testing .. 90

6.5 Performance patterns ... 92
6.5.1 Increasing performance on upper layers 92
6.5.2 Caching ... 93
6.5.3 Web proxies ... 94

9

6.5.4 Operational data store .. 94
6.5.5 Front-end servers .. 95
6.5.6 In-memory databases .. 95
6.5.7 Edge servers ... 95
6.5.8 Scalability ... 95
6.5.9 Load balancing .. 97
6.5.10 High performance computing 99
6.5.11 Design for use .. 99
6.5.12 Capacity management ... 100

7 Security Concepts ... 101

7.1 Introduction ... 101
7.1.1 Core infrastructure security 102
7.1.2 Crime against IT infrastructures 103
7.1.3 Malicious code ... 103

7.2 Security exploits ... 105
7.2.1 Social engineering ... 105
7.2.2 Phishing ... 105
7.2.3 Baiting ... 105

7.3 Security attacks .. 106
7.3.1 Denial of service attack .. 106
7.3.2 Ransomware ... 108
7.3.3 Integrity attacks .. 108

7.4 Cloud security .. 109

7.5 Security Patterns .. 110
7.5.1 Prevention .. 110
7.5.2 Detection .. 121
7.5.3 Response .. 122

PART III – ARCHITECTURE BUILDING BLOCKS 125

8 Datacenters .. 127

8.1 Introduction ... 127

8.2 Datacenter building blocks 130
8.2.1 Datacenter categories .. 130
8.2.2 Cloud datacenters .. 130
8.2.3 Location of the datacenter 131
8.2.4 Physical structure .. 133
8.2.5 Power supply .. 137
8.2.6 Cooling ... 143
8.2.7 Fire prevention, detection, and suppression 147
8.2.8 Equipment racks .. 150
8.2.9 Datacenter cabling and patching 153
8.2.10 Datacenter energy efficiency 153

8.3 Datacenter availability ... 155
8.3.1 Availability tiers ... 155

10

8.3.2 Redundant datacenters ...157
8.3.3 Floor management ...157

8.4 Datacenter performance 158

8.5 Datacenter security .. 158

9 Networking ... 161

9.1 Introduction ... 161

9.2 Network topologies .. 163

9.3 Networking building blocks 166
9.3.1 OSI Reference Model ..166
9.3.2 Physical layer ..168
9.3.3 Data link layer ...176
9.3.4 Network layer ..183
9.3.5 Transport layer ..193
9.3.6 Session layer ...195
9.3.7 Presentation layer ..197
9.3.8 Application layer ..197

9.4 Network virtualization .. 204
9.4.1 Virtual LAN (VLAN) ...204
9.4.2 VXLAN ..205
9.4.3 Virtual routing and forwarding (VRF)206
9.4.4 Virtual NICs ..206
9.4.5 Virtual switch ..206
9.4.6 Software Defined Networking207
9.4.7 Network Function Virtualization209

9.5 Network availability .. 209
9.5.1 Layered network topology209
9.5.2 Spine and Leaf topology ...211
9.5.3 Network teaming ...212
9.5.4 Spanning Tree Protocol ...213
9.5.5 Multihoming ..215

9.6 Network performance ... 216
9.6.1 Throughput and bandwidth217
9.6.2 Latency ..217
9.6.3 Quality of Service (QoS) ...218
9.6.4 WAN link compression ..219

9.7 Network security .. 219
9.7.1 Network encryption ..219
9.7.2 Firewalls ...219
9.7.3 Network segmentation ..220
9.7.4 DMZ ...221
9.7.5 RADIUS ..224

10 Storage ... 225

11

10.1 Introduction ... 225

10.2 Storage building blocks .. 229
10.2.1 Disks ... 230
10.2.2 Tapes .. 235
10.2.3 Controllers ... 238
10.2.4 Direct Attached Storage (DAS) 247
10.2.5 Storage Area Network (SAN) 248
10.2.6 Network Attached Storage (NAS) 253
10.2.7 Object Storage ... 254
10.2.8 Software Defined Storage 254

10.3 Storage availability .. 256
10.3.1 Redundancy and data replication 256
10.3.2 Backup and recovery ... 257
10.3.3 Archiving ... 262

10.4 Storage performance .. 263
10.4.1 Disk performance .. 263
10.4.2 Interface throughput ... 266
10.4.3 Caching ... 267
10.4.4 Storage tiering ... 268
10.4.5 Load optimization ... 269

10.5 Storage security ... 269
10.5.1 Protecting data at rest ... 269
10.5.2 SAN zoning and LUN masking 271

11 Compute ... 273

11.1 Introduction ... 273

11.2 Compute building blocks 275
11.2.1 Computer housing ... 275
11.2.2 Processors ... 278
11.2.3 Memory ... 283
11.2.4 Interfaces .. 285
11.2.5 Virtual machines ... 289
11.2.6 Container technology .. 297
11.2.7 Serverless computing .. 301
11.2.8 Mainframes .. 302
11.2.9 Midrange systems ... 307
11.2.10 x86 servers ... 313
11.2.11 Supercomputers .. 316
11.2.12 Quantum computers ... 317

11.3 Compute availability ... 319
11.3.1 Hot swappable components 320
11.3.2 Parity and ECC memory 320
11.3.3 Virtualization availability 321

11.4 Compute performance .. 324
11.4.1 Moore's law .. 324

12

11.4.2 Increasing CPU and memory performance327
11.4.3 Virtualization performance335

11.5 Compute security .. 336
11.5.1 Physical security ...336
11.5.2 Data in use ...336
11.5.3 Virtualization security ..336

12 Operating systems .. 339

12.1 Introduction ... 339

12.2 Popular operating systems 341
12.2.1 z/OS ..341
12.2.2 IBM i (OS/400) ...342
12.2.3 UNIX ...342
12.2.4 Linux ...344
12.2.5 BSD...346
12.2.6 Windows ..347
12.2.7 MacOS ...348
12.2.8 Operating systems for mobile devices348
12.2.9 Special purpose operating systems349

12.3 Operating System building blocks 349
12.3.1 Process scheduling ..351
12.3.2 File systems ...351
12.3.3 APIs and system calls ..352
12.3.4 Device drivers ...353
12.3.5 Memory management ..354
12.3.6 Shells, CLIs and GUIs ..356
12.3.7 Operating system configuration356

12.4 Operating system availability 357
12.4.1 Failover clustering ...357

12.5 Operating system performance 362
12.5.1 Increasing memory ...362

12.6 Operating system security 363
12.6.1 Patching ...363
12.6.2 Hardening ..364
12.6.3 Malware scanning ..364
12.6.4 Host-based firewalls ..364
12.6.5 Limiting user accounts ...365
12.6.6 Hashed passwords...365
12.6.7 Decreasing kernel size ...366

13 End User Devices .. 367

13.1 Introduction ... 367

13.2 End user device building blocks 370
13.2.1 Desktop PCs and laptops370
13.2.2 Mobile devices ..371

13

13.2.3 Bring Your Own Device (BYOD) 372
13.2.4 Printers ... 373

13.3 Desktop virtualization .. 378
13.3.1 Application virtualization 378
13.3.2 Server Based Computing 380
13.3.3 Virtual Desktop Infrastructure (VDI) 381
13.3.4 Thin clients .. 383

13.4 End user device availability 384
13.4.1 Reliability of devices .. 384
13.4.2 Software stack ... 384
13.4.3 Printers and other equipment 384

13.5 End user device performance 384
13.5.1 RAM .. 384
13.5.2 Hard disk ... 385
13.5.3 Network connectivity ... 385

13.6 End user device security 385
13.6.1 Physical security ... 385
13.6.2 Malware protection .. 385
13.6.3 Disk encryption .. 386
13.6.4 Mobile device management 386
13.6.5 Network Access Control (NAC) 386
13.6.6 End user authorizations and awareness 387

Part IV – INFRASTRUCTURE MANAGEMENT 389

14 Infrastructure Deployment options 391

14.1 Introduction ... 391

14.2 Hosting options .. 392

14.3 (Hyper) Converged Infrastructure 393

14.4 Private cloud .. 394

14.5 Public cloud .. 396

14.6 Hybrid cloud ... 396

15 Automation ... 399

15.1 Introduction ... 399

15.2 Infrastructure as code .. 399
15.2.1 Declarative vs imperative languages 400
15.2.2 Versioning .. 400
15.2.3 Commonly used IaC languages 401

15.3 Configuration management tools 405

15.4 Pipelines ... 407

16 Documenting the infrastructure 409

14

16.1 Introduction ... 409

16.2 CMDB .. 409

16.3 Diagrams .. 410

16.4 IaC tools ... 412

16.5 Documenting procedures 413

17 Assembling and testing 415

17.1 Assembling the infrastructure 415

17.2 Testing the infrastructure 416
17.2.1 Test scope ..416
17.2.2 Test stages...417

17.3 Go live scenarios ... 418

18 Maintaining the infrastructure 421

18.1 Introduction ... 421

18.2 Systems management processes 421
18.2.1 TOGAF ...422
18.2.2 ITIL ...424
18.2.3 DevOps for infrastructure425
18.2.4 Site Reliability Engineering425
18.2.5 FinOps ...426

18.3 Monitoring .. 426

18.4 Management using SNMP 427

18.5 Logging ... 428

18.6 Capacity management .. 430

19 Deploying applications 431

19.1 DTAP environments .. 431

19.2 Blue-Green deployment .. 432

19.3 Continuous Delivery .. 433

20 Decommissioning infrastructures 435

20.1 Preparation ... 435

20.2 Execution .. 436

20.3 Cleanup .. 436

PART V - APPENDICES .. 437

Infrastructure checklist .. 439

Datacenter ... 439

15

Network... 440

Storage .. 441

Compute .. 442

Operating systems ... 443

End user devices .. 443

Automation .. 444

Documentation .. 444

Procedures .. 444

Deployment ... 445

Abbreviations ... 447

IS 2020.3 Curriculum reference matrix 457

Further reading .. 461

Books .. 461

Papers ... 463

Index ... 467

End notes ... 475

17

Preface

What this book is about

This book is about information technology (IT) infrastructure architecture.

Infrastructure refers to all the hardware and system software components

required to run IT applications. And infrastructure architecture describes the

overall design and evolution of that infrastructure.

This book explains how infrastructure components work at the architectural

level. This means that components are described in building blocks that are tied

to specific infrastructure technologies. Decisions made at this level are

architecturally relevant, which means that once decisions are made at the

building block level, it is relatively difficult to change them later. For example,

the decision to use a particular cabling infrastructure in a datacenter cannot be

easily changed once the datacenter is in operation.

This book does not provide the level of detail required by engineers, but rather

describes the most important architectural building blocks and concepts.

IT infrastructures are complex by nature and provide non-functional attributes

such as performance, availability, and security to applications. This book

describes each infrastructure building block and its specific performance,

availability, and security concepts.

Until now, there has been no single publication that describes the entire field of

IT infrastructure. Books and papers exist on each part of IT infrastructure, such

as networking, installing and managing operating systems, storage, and

virtualization, but no publication has yet described IT infrastructure as a whole.

This book aims to fill that gap.

18

Intended audience

This book is intended for infrastructure architects and designers, software

architects, systems managers, and IT managers. It can also be used in education,

for example in a computer science class. This book is very suitable for

beginners, as almost every term is explained, while for experts and professionals

this book is more of a review and overview.

Infrastructure architects and designers can use this book to learn more about

infrastructure design that is not their core competency. For example, network

designers will probably not learn anything new about networking, but they will

probably learn a lot about all the other parts of the infrastructure, such as

datacenters, storage, and servers. The same is true for other designers.

Software architects build software that runs on infrastructure. Software

architects who understand the challenges an infrastructure architect faces can

optimize their software for certain infrastructure characteristics. Understanding

infrastructure helps software architects build more reliable, faster, manageable,

and secure applications.

Systems managers learn to identify key architectural choices and principles in

an infrastructure, as well as ways to update and change a running infrastructure

without compromising the architecture as a whole.

IT managers gain a complete view of IT infrastructures and IT architecture.

This will help them work with system administrators and infrastructure

architects to better understand their concerns.

Students of computer science will find a wealth of information about IT

infrastructures that will provide a solid foundation for their computer science

studies. This book is used by a number of universities around the world as part

of their IT architecture curricula. It is particularly suitable for courses based on

the Association for Computing Machinery (ACM) IS 2020.3 curriculum. A

reference matrix of the curriculum topics and the relevant sections in this book

is provided in the appendix IS 2020.3 Curriculum reference matrix.

Some basic IT knowledge is needed to read this book, but the reader is

introduced to each topic in small steps.

19

Acknowledgements

I would like to thank my wife, Angelina, for the patience she showed when I

was working again on this book for a whole evening or weekend, without giving

her the attention she deserves, and my three children Laura, Maarten, and

Andreas, who I love.

Jan van Til inspired me to think more thoroughly about the definition of

infrastructure. His (Dutch) work on information management can be found at

www.emovere.nl.

I want to thank Robert Elsinga, Olav Meijer, Esther Barthel, Raymond

Groenewoud, Emile Zweep, Cathy Ellis, Jacob Mulder, Robbert Springer, Marc

Eilander, and Jan van der Zanden for their criticism, useful suggestions, and

hard work when reviewing this book.

For the transformation of this book to the online training on MyEducator, I

would like to thank VP Sales Scott Pectol and Content Team Lead Aspen

Moore.

Especially I want to thank Lodewijk Bogaards, who reviewed the book’s first

edition and provided literally hundreds of useful tips on the described topics. He

also made many corrections on my English grammar.

The photo on the cover is based on the Shutterstock photo

https://www.shutterstock.com/image-photo/server-rack-cluster-data-center-

shallow-71676715, taken by a photographer named Lightpoet.

Courseware

This book is used in a number of universities around the world as a resource for

their IT infrastructure courses. For more information about using this book in a

university course, please contact the author at sjaak.laan@gmail.com.

Courseware can be downloaded from www.sjaaklaan.com/book. It contains all

the figures used in the book in both Visio and high-resolution PNG format, the

list of abbreviations, a PowerPoint slide deck for each chapter (over 700 slides

in total), a set of test questions for each chapter (over 200 questions in total),

and the infrastructure checklist from the appendix.

This book is also available as online training from MyEducator. Please check

https://app.myeducator.com/reader/web/1957a/.

http://www.emovere.nl/

20

Note to the fourth edition

In the fourth edition of this book, a number of corrections have been made, some

terminology has been clarified, and several typographical and syntax errors have

been corrected. In addition, the following changes have been made:

• The content has been updated to reflect the new Association for

Computing Machinery (ACM) IS 2020.3 Curriculum - Competency

Area - IT Infrastructure.

• A new chapter on cloud computing has been added, and cloud-related

content has been added throughout the rest of the book.

• A new chapter on documenting infrastructures was added.

• New technologies such as serverless computing, edge computing and

quantum computing have been added.

• The security chapter has been rewritten and restructured to better

reflect infrastructure-related security concerns.

• The Infrastructure as Code chapter has been rewritten to reflect

current working practices and a chapter on automation has been

added as this has become more important over the years.

• The chapter on Purchasing Infrastructure and Services has been

removed as it was too general and not specific to infrastructure. The

chapter was mandatory for the IS 2010.4 syllabus, but has been

removed from the IS 2020.3 syllabus.

• The networking chapter has been expanded to include POP, SMTP,

FTP, HTTP, and HTTPS protocols. This is a requirement from the IS

2020.3 syllabus.

• An appendix has been added that describes a high-level checklist that

can be used to ask the right questions when learning about an existing

infrastructure in the field.

• More than 100 edits were made throughout the book to clarify and

update content, and to remove outdated content.

• Finally, as technology has advanced in recent years, the book has

been updated to include the most current information.

21

About the Author

Sjaak Laan (1964) leads CGI's Cloud and Infrastructure practice in the

Netherlands. After studying electronics in the 1980s, he started his career in the

IT industry at a PC repair company, where he repaired thousands of IBM PS/2

system boards at chip level. He later became an IT infrastructure specialist in

networking, storage and computing. He now has more than 30 years of IT

experience.

Mr. Laan joined CGI in 2000 and is now a Director Consulting Expert in the

government, financial, and energy markets. He is an expert in cloud,

infrastructure and security and has extensive knowledge of systems

management processes and integrations.

As an architect, he is certified by The Open Group as a Master IT Architect and

is TOGAF certified. In the area of cloud, he is an AWS Certified Solution

Architect and Certified Azure Solutions Architect Expert. His information

security knowledge is supported by his CISSP and CRISC certifications.

Sjaak Laan has been writing about cloud and infrastructure on www.sjaaklaan.nl

since 2006, has a number of publications to his name and regularly gives

trainings and presentations. Mr. Laan usually works for clients as a lead architect

or consultant on complex projects.

23

PART I
-

INTRODUCTION TO IT
INFRASTRUCTURE

Infrastructure is much more important than architecture.

Rem Koolhaas, one of the world's most famous architects

25

1.1 Introduction

In the early decades of IT development, most infrastructures were relatively

simple. As applications grew in functionality and complexity, hardware

basically just got faster. In recent years, IT infrastructures have become more

complex due to the rapid development and deployment of new types of

applications, such as big data, artificial intelligence (AI), machine learning, the

Internet of Things (IoT), and cloud computing. These applications require new

and more sophisticated infrastructure services that are secure, highly scalable,

and available 24/7.

1.2 What is IT infrastructure?

IT infrastructure has been around for a long time. But surprisingly, there does

not seem to be a universally accepted definition of IT infrastructure. I have

found that many people are confused by the term IT infrastructure, and a clear

definition would help them understand what IT infrastructure is and is not.

In literature, many definitions of IT infrastructure can be found. Some of them

are:

• IT infrastructure is defined broadly as a set of information technology

(IT) components that are the foundation of an IT service; typically

1

THE DEFINITION OF
IT INFRASTRUCTURE

26

physical components (computer and networking hardware and

facilities), but also various software and network components.

Wikipedia

• All of the hardware, software, networks, facilities, etc., that are

required to develop, test, deliver, monitor, control, or support IT

services. The term IT Infrastructure includes all of the Information

Technology but not the associated people, processes and

documentation.

ITILv3.

• IT infrastructure refers to the composite hardware, software, network

resources and services required for the existence, operation and

management of an enterprise IT environment. IT infrastructure allows

an organization to deliver IT solutions and services to its employees,

partners and/or customers and is usually internal to an organization

and deployed within owned facilities.

Techopedia

• IT infrastructure is the system of hardware, software, facilities and

service components that support the delivery of business systems and

IT-enabled processes.

Gartner

• IT infrastructure refers to the combined components needed for the

operation and management of enterprise IT services and IT

environments.

IBM

• IT infrastructure are the components required to operate and manage

enterprise IT environments. IT infrastructure can be deployed within

a cloud computing system, or within an organization's own facilities.

These components include hardware, software, networking

components, an operating system (OS), and data storage, all of which

are used to deliver IT services and solutions.

Red Hat

Based on these definitions, the term infrastructure may seem a bit arbitrary. Let's

try to clear things up.

The word infrastructure comes from the words infra (Latin for "underneath")

and structure. It encompasses all the components that are "underneath" the

structure, where the structure may be a city, a house, or an information system.

In the physical world, infrastructure often refers to public utilities such as water

pipes, power lines, gas pipes, sewers, and telephone lines – components that

literally lie beneath the structure of a city.

27

Figure 1: Views on IT infrastructure

For most people, infrastructure is invisible and taken for granted. When a

business analyst describes business processes, the information used in the

process is very important. How that information is managed by IT systems is

"below the surface" to the business analyst. They think of IT systems as

infrastructure.

For users of IT systems, applications are important because they use them every

day, but how they are implemented or where they are physically located is

invisible (below the surface) to them and is therefore considered infrastructure.

For systems managers, the building that houses their servers and the utility

company that provides the power are considered infrastructure.

So what infrastructure is depends on who you ask and their point of view.

The scope of infrastructure as used in this book is described in more detail in

chapter 2.

1.3 What is IT architecture?

Most of today's infrastructure landscapes are the result of a history of application

implementation projects that brought in their own specialized hardware and

infrastructure components. Mergers and acquisitions have made matters worse,

leaving many organizations with multiple sets of the same infrastructure

services that are difficult to interconnect, let alone integrate and consolidate.

Organizations benefit from infrastructure architecture when they want to be

more flexible and agile because a solid, scalable, and modular infrastructure

provides a solid foundation for agile adaptations. The market demands a level

of agility that can no longer be supported by infrastructures that are inconsistent

and difficult to scale. We need infrastructures built with standardized, modular

28

components. And to make infrastructures consistent and aligned with business

needs, architecture is critical.

Architecture is the philosophy that underlies a system and defines its purpose,

intent, and structure. Different areas of architecture can be defined, including

business architecture, enterprise architecture, data architecture, application

architecture, and infrastructure architecture. Each of these areas has certain

unique characteristics, but at their most basic level, they all aim to map IT

solutions to business value.

Architecture is needed to govern an infrastructure as it is designed, as it is used,

and as it is changed. We can broadly categorize architects into three groups:

enterprise architects, domain architects, and solution architects, each with their

own role.

1.3.1 Solution architects

Solution architects create IT solutions, usually as a member of a project team.

A solution architect is finished when the project is complete. Solution architects

are the technical conscience and authority of a project, are responsible for

architectural decisions in the project, and work closely with the project manager.

Where the project manager manages the process of a project, the solution

architect manages the technical solution of the project, based on business and

technical requirements.

1.3.2 Domain architects

Domain architects are experts on a particular business or technology topic.

Because solution architects cannot always be fully knowledgeable about all

technological details or specific business domain issues, domain architects often

assist solution architects on projects. Domain architects also support enterprise

architects because they are aware of the latest developments in their field and

can inform enterprise architects about new technologies and roadmaps.

Examples of domain architects are cloud architects, network architects, and

VMware architects.

Domain architects most often work for infrastructure or software vendors, where

they help customers implement the vendor's technologies.

1.3.3 Enterprise architects

Enterprise architects continuously align an organization's entire IT landscape

with the business activities of the organization. Using a structured approach,

enterprise architects enable transformations of the IT landscape (including the

29

IT infrastructure). Therefore, an enterprise architect is never finished (unlike the

solution architect in a project, who is finished when the project is finished).

Enterprise architects typically work closely with the CIO and business units to

align the needs of the business with the current and future IT landscape.

Enterprise architects build bridges and act as advisors to the business and IT.

31

2.1 IT building blocks

The definition of infrastructure as used in this book is based on the building

blocks in the model as shown in Figure 2. In this model, processes consume

information, and that information is stored and managed by applications.

Applications require application platforms and infrastructure to run. All of this

is managed by different categories of systems management.

2

THE
INFRASTRUCTURE

MODEL

32

Figure 2: The infrastructure model

A model is always a simplified version of reality, useful to explain a certain

point; not covering all details. Therefore, the infrastructure model is not perfect.

As George E. P. Box once said: “Essentially, all models are wrong, but some

are useful.”1

The following sections provide a high-level description of the building blocks

in the infrastructure model.

33

2.2 Processes / Information

building block

Figure 3: Processes / Information building block

Organizations implement business processes to fulfil their mission and vision.

These processes are organization specific – they are the main differentiators

between organizations. As an example, some business processes in an insurance

company could be claim registration, claim payment, and create invoice.

Business processes create and use information. In our example, information

could be the claim’s date or the number of dollars on an invoice. Information is

typically entered, stored and processed using applications.

Functional management is the category of systems management that ensures the

system is configured to perform the required business functions.

34

2.3 Applications building block

Figure 4: Applications building block

The Applications building block includes several types of applications based on

the following characteristics:

• Usage: Applications can be single-user or multi-user. A single-user

application typically runs on end-user devices such as PCs and

laptops. Examples include web browsers, word processors, and email

clients. Examples of multi-user applications include mail servers,

portals, collaboration tools, and instant messaging servers.

• Source: Applications can be purchased as commercial off-the-shelf

(COTS) products or developed as custom software.

• Architecture: Applications can be designed as standalone

applications or as multi-tier applications. A multi-tier application

consists of a number of layers, such as a JavaScript application in a

browser that communicates with an on-premises web server, which

communicates with an application server, which communicates with a

database.

• Timeliness: Interactive applications respond to user actions, such as

mouse clicks. They typically respond in the range of 100 to 300 ms.

Real-time systems, such as Supervisory Control And Data

35

Acquisition (SCADA) systems, are used in manufacturing, logistics,

or other environments where timeliness is critical. These systems

must respond in less than 10 ms. At the other end of the spectrum are

batch-based systems that process data for hours at a time.

Each of these types of applications requires a different type of underlying

infrastructure.

Applications management is responsible for the configuration and technical

operations of the applications.

2.4 Application Platform building
block

Figure 5: Application Platform building block

Most applications need some additional services, known as application

platforms, that enable them to work. We can identify the following services as

part of the application platform building block:

• Application servers provide services to applications. Examples are

Java or .Net application servers and frameworks like IBM

WebSphere, Apache Tomcat, and Red Hat JBoss.

36

• Container platforms like Kubernetes, Azure Container Instances,

and Amazon Elastic Container Service, that run docker containers.

• Connectivity entails Enterprise Service Buses (ESBs) like Microsoft

BizTalk, the TIBCO Service Bus, IBM MQ, and SAP NetWeaver PI.

• Databases, also known as database management systems (DBMSs),

provide a way to store and retrieve structured data. Examples are

Oracle RDBMS, IBM DB2, Microsoft SQL Server, PostgreSQL,

MySQL, Apache CouchDB, and MongoDB.

Application platforms are typically managed by systems managers specialized

in the specific technology.

2.5 Infrastructure building blocks

Figure 6: Infrastructure building block

This book uses the selection of building blocks as depicted in Figure 6 to

describe the infrastructure building blocks and concepts – the scope of this book.

The following infrastructure building blocks are in scope:

37

• End User Devices are the devices used by end users to work with

applications, like PCs, laptops, thin clients, mobile devices, and

printers.

• Operating Systems are collections of programs that manage a

computer’s internal workings: its memory, processors, devices, and

file system.

• Compute are the physical and virtual computers in the datacenter,

also known as servers.

• Storage are systems that store data. They include hard disks, tapes,

Direct Attached Storage (DAS), Network Attached Storage (NAS),

and Storage Area Networks (SANs).

• Networking is used to connect all infrastructure components. This

building block includes routers, switches, firewalls, WANs (wide area

networks), local area networks (LANs), internet access, and VPNs

(Virtual Private Network), and (on the network application level)

networking services like DNS, DHCP, and time services, necessary

for the infrastructure to work properly.

• Datacenters are locations that host most IT infrastructure hardware.

They include facilities like uninterruptible power supplies (UPSs),

Heating, Ventilation, and Air Conditioning (HVAC), computer racks,

and physical security measures.

Please note that these building blocks are not per definition hierarchically

related. For instance, servers need both networking and storage, and both are

equally important.

Infrastructure management includes processes like ITIL and DevOps, and tools

for monitoring, backup, and logging.

38

2.6 Non-Functional attributes

Figure 7: Non-Functional attributes

An IT system does not only provide functionality to users; functionality is

supported by non-functional attributes. Non-functional attributes result from the

configuration of all IT system components, both at the infrastructure level and

above.

Although many other non-functional attributes are defined, as described in

chapter 4, availability, performance, and security are almost always the essential

ones in IT infrastructure architectures (Figure 7).

39

In recent years, we have seen the widespread adoption of cloud computing.

Cloud computing can be seen as one of the most important paradigm shifts in

computing in recent years. Many organizations now have a cloud-first strategy

and are taking steps to move applications from their own on-premises

datacenters to the cloud managed by cloudproviders.

The term cloud is not new. In 1997, Ramnath Chellappa of the University of

Texas already stated:

Computing has evolved from a mainframe-based structure to a network-based

architecture. While many terms have appeared to describe these new forms,

the advent of electronic commerce has led to the emergence of 'cloud

computing‘.

While there are many public cloud service providers today, the three largest are

Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform

(GCP). Together, these three have 66% of the market share and have a large

number of datacenters around the world. Figure 8 shows when each of these

cloud providers started.

3

CLOUD COMPUTING
AND

INFRASTRUCTURES

40

Figure 8: Cloud time line

The three major cloud providers offer similar services, but sometimes under

different names. For instance, a virtual machine in Azure is just called a virtual

machine, but in GCP it is called a Compute Engine and in AWS it is called an

EC2 instance.

While cloud computing can be seen as the new infrastructure, many

organizations will be using on-premises infrastructure for many years to come.

Migrating a complex application landscape to a cloud provider is no simple task

and can take years. And maybe an organization is not allowed to take all its

applications to the cloud. In many cases, there will be a hybrid situation, with

part of the infrastructure on-premises and another part in one or more clouds.

Please be aware that the cloud is just a number of datacenters that are still filled

with hardware – compute, networking and storage. Therefore, it is good to

understand infrastructure building blocks and principles even when moving to

the cloud,

3.1 Cloud definition

The most accepted definition of cloud computing is that of the National Institute

of Standards and Technology (NIST)2:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources(e.g.,

networks, servers, storage, applications, and services) that can be rapidly

provisioned and released with minimal management effort or service

provider interaction..

It is important to realize that cloud computing is not about technology; it is an

outsourcing business model. It enables organizations to cut cost while at the

same time focusing on their primary business – they should focus on running

their business instead of running a mail server.

Clouds are composed of five essential characteristics, four deployment models,

and three service models.

41

3.2 Cloud characteristics

Essential cloud characteristics are:

• On demand self-service – As a result of optimal automation and

orchestration, minimal systems management effort is needed to

deploy systems or applications in a cloud environment. In most cases,

end uses can configure, deploy, start and stop systems or applications

on demand.

• Rapid elasticity – A cloud is able to quickly scale-up and scale-down

resources. When temporarily more processing power or storage is

needed, for instance as a result of a high-exposure business marketing

campaign, a cloud can scale-up very quickly on demand. When

demand decreases, cloud resources can rapidly scale down, leading to

elasticity of resources.

• Resource pooling – Instead of providing each application with a

fixed amount of processing power and storage, cloud computing

provides applications with resources from a shared pool. This is

typically implemented using virtualization technologies.

• Measured service – In a cloud environment the actual resource usage

is measured and billed. There are no capital expenses, only

operational expenses. This in contrast with the investments needed to

build a traditional infrastructure.

• Broad network access – Capabilities are available over the network

and accessed through standard mechanisms.

Be aware that when using public cloud based solutions, the internet connection

becomes a Single Point of Failure. Internet availability and internet

performance becomes critical and redundant connectivity is therefore key.

3.3 Cloud deployment models

A cloud can be implemented in one of four deployment models.

• A public cloud deployment is delivered by a cloud service provider,

is accessible through the internet, and available to the general public.

Because of their large customer base, public clouds largely benefit

from economies of scale.

42

• A private cloud is operated solely for a single organization, whether

managed internally or by a third-party, and hosted either on premises

or external. It extensively uses virtualization and standardization to

bring down systems management cost and staff.

• A community cloud is much like a private cloud, but shared with a

community of organizations that have shared concerns (like

compliance considerations). It may be owned, managed, and operated

by one or more of the organizations in the community, a third party,

or some combination, and it may exist on or off premises.

• In a hybrid cloud deployment, a service or application is provided by

a combination of a public cloud, and a community cloud and/or a

private cloud. This enables running generic services (like email

servers) in the public cloud while hosting specialized services (like a

business specific application) in the private or community cloud.

3.4 Cloud service models

Clouds can be delivered in one of three service models:

• Software-as-a-Service (SaaS) delivers full applications that can be

used by business users, and need little or no configuration. Examples

are Microsoft Office365, LinkedIn, Facebook, Twitter, and

Salesforce.com.

• Platform-as-a-Service (PaaS) delivers a scalable, high available,

open programming platform that can be used by developers to build

bespoke applications that run on the PaaS platform. Examples are

Microsoft Azure Cloud Service and Google App Engine.

• Infrastructure-as-a-Service (IaaS) delivers (virtual) machines,

networking, and storage. The user needs to install and maintain the

operating systems and the layers above that. Examples are Amazon

Elastic Cloud (EC2 and S3) and Microsoft Azure IaaS.

The following figure shows the responsibility of the cloud provider for each

service model.

43

Figure 9: Cloud provider responsibilities

In the context of this book, IaaS is the most relevant service model.

When we combine both deployment and service models, we get the following

picture.

44

Figure 10: Cloud models

Because of the scope of this book, the next section describes Infrastructure as s

Service in more detail.

3.5 Infrastructure as a Service
(IaaS)

Infrastructure as a Service provides virtual machines, virtualized storage,

virtualized networking and the systems management tools to manage them. IaaS

can be configured using a graphical user interface (GUI), a command line

interface (CLI), or application programming interfaces (APIs).

IaaS is typically based on cheap commodity white label hardware. The

philosophy is to keep the cost down by allowing the hardware to fail every now

and then. Failed components are either replaced or simply removed from the

pool of available resources.

IaaS provides simple, highly standardized building blocks to applications. It

does not provide high availability, guaranteed performance or extensive security

controls. Consequently, applications running on IaaS should be robust to allow

for failing hardware and should be horizontally scalable to increase

performance.

In order to use IaaS, users must create and start a new server, and then install an

operating system and their applications. Since the cloud provider only provides

basic services, like billing and monitoring, the user is responsible for patching

and maintaining the operating systems and application software.

45

Not all operating systems and applications can be used in an IaaS cloud; some

software licenses prohibit the use of a fully scalable, virtual environment like

IaaS, where it is impossible to know in advance on which machines software

will run.

3.6 Edge computing

The goal of edge computing is to bring computing power and data storage closer

to where it is needed, rather than relying on a cloud or on-premises datacenter.

In edge computing, compute and storage take place on devices at the edge of the

network, such as routers, gateways, switches, and sensors.

Edge computing can be a viable option where low latency, high bandwidth, and

real-time processing are critical. For example, in the case of autonomous

vehicles, real-time decision making is critical for safety. In this scenario, edge

computing can enable the vehicle to process data and make decisions locally,

rather than sending all sensor data to a centralized datacenter.

Edge computing is also gaining popularity in Internet of Things (IoT)

applications, where a large number of devices generate data that must be

processed in real time. By using edge computing, organizations can reduce the

amount of data that needs to be sent to the cloud, which can reduce costs and

improve performance.

47

PART II
 –

NON FUNCTONAL
ATTRIBUTES

It's hardware that makes a machine fast. It's software that makes a fast

machine slow.

Craig Bruce

49

51

4.1 Introduction

IT infrastructures provide services to applications. Some of these infrastructure

services can be well defined, like providing disk space, or routing network

messages. Non-functional attributes, on the other hand, describe the qualitative

behavior of a system, rather than specific functionalities. Some examples of

non-functional attributes are scalability, reliability, stability, testability, and

recoverability. But in my experience, the three most important non-functional

attributes for IT infrastructures are security, performance, and availability.

Therefore, for each topic described in this book, these three non-functionals

attributes are explicitly addressed.

Non-functional attributes are very important for the successful implementation

and use of an IT infrastructure, but in projects, they rarely get the same attention

as the functional services.

Not everybody is aware of the value of pursuing non-functional attributes. The

name suggests they have no function. But of course, these attributes do have a

function in the business process, and usually a fairly large one. For instance,

when the infrastructure of a corporate website is not performing well, the

visitors of the website will leave, which has a direct financial impact on the

business. When credit card transactions are not stored in a secure way in the

infrastructure, and as a result leak to hackers, the organization that stored the

credit card data will have a lot of explaining to do to their customers.

4

INTRODUCTION TO
NON-FUNCTIONAL

ATTRIBUTES

52

So, non-functional attributes are very functional indeed, but they are not directly

related to the primary functionalities of a system. Instead of the term non-

functional requirement, it would be much better to use the term quality attributes

or implicit requirements. Although these terms much better reflect the nature

and importance of, for example, performance, security, and availability, the term

non-functional requirement (as expressed in non-functional requirements or

NFRs) is more commonly used and widely known. Therefore, in this book I

keep on using the term non-functional attribute, although I do realize that the

term could be misleading.

While architects and certainly infrastructure specialists are usually very aware

of the importance of non-functional attributes of their infrastructure, many other

stakeholders may not have the same feelings about it. Users normally think of

functionalities, while non-functional attributes are considered a hygiene factor

and taken for granted (“Of course, the system must perform well”). Users of

systems most of the time don’t state non-functional attributes explicitly, but they

do have expectations about them.

An example is the functionality of a car.

A car has to bring you from A to B, but many quality attributes are taken for

granted.

For instance, the car has to be safe to drive in (leading to the implementation of

anti-lock brakes, air bags, and safety belts) and reliable (the car should not

break down every day), and the car must adhere to certain industry standards

(the gas pedal must be the right-most pedal).

All of these extras cost money and might complicate the design, construction,

and maintenance of the car. While all clients have these non-functional

requirements, they are almost never expressed as such when people are

ordering a new car.

4.2 Non-functional Requirements

It is the IT architect or requirements engineer’s job to find implicit requirements

on non-functional requirements. This can be very hard, since what is obvious or

taken for granted by customers or end users of a system is not always obvious

to the designers and builders of that system. Not to mention the non-functional

requirements of other stakeholders, such as the existence of service windows or

monitoring capabilities, which are important requirements for systems

managers.

53

SKIPPED TEXT

4.2.1 MTBF and MTTR

The factors involved in calculating availability are Mean Time Between Failures

(MTBF), which is the average time that passes between failures, and Mean Time

To Repair (MTTR), also known as Mean Time To Recover, which is the time it

takes to recover from a failure.

Figure 12: MTBF and MTTR

The term "mean" means that the numbers expressed by MTBF and MTTR are

statistically calculated values.

4.2.1.1 Mean Time Between Failures (MTBF)

The MTBF is expressed in hours (how many hours will the component or

service work without failure). Some typical MTBF figures are shown in Table

3.

Component MTBF (hours)

Hard disk 750,000

Power supply 100,000

Fan 100,000

Ethernet Network Switch 350,000

RAM 1,000,000

Table 3: MTBF levels

It is important to understand how these numbers are calculated. No manufacturer

can test if a hard disk will continue to work without failing for 750,000 hours (=

85 years). Instead, manufacturers run tests on large batches of components. In

case of for instance hard disks, 1000 disks van be tested for 3 months. If in that

period of time five disks fail, the MTBF is calculated as follows:

54

The test time is 3 months. One year has four of those periods. So, if the test

would have lasted one year, 4 × 5 = 20 disks would have failed.

In one year, the disks would have run in total:

1000 disks × 365 × 24 = 8,760,000 running hours.

This means that the MTBF =
8,760,000 ℎ𝑜𝑢𝑟𝑠

20 𝑓𝑎𝑖𝑙𝑒𝑑 𝑑𝑟𝑖𝑣𝑒𝑠
= 438,000 hours/failure.

So, actually MTBF only says something about the chance of failure in the first

months of use. It is an extrapolated value for the probable downtime of a disk.

It would be better to specify the annual failure rate instead (in our example, 2%

of all disks will fail in the first year), but that is not very good advertising.

4.2.1.2 Mean Time To Repair (MTTR)

When a component breaks, it needs to be repaired. Usually the repair time

(expressed as Mean Time To Repair – MTTR) is kept low by having a service

contract with the supplier of the component. Sometimes spare parts are kept on-

site to lower the MTTR (making MTTR more like Mean Time To Replace).

Typically, a faulty component is not repaired immediately. Some examples of

what might be needed for to complete repairs are:

• Notification of the fault (time before seeing an alarm message)

• Processing the alarm

• Finding the root cause of the error

• Looking up repair information

• Getting spare components from storage

• Having technician come to the datacenter with the spare component

• Physically repairing the fault

• Restarting and testing the component

Instead of these manual actions, the best way to keep the MTTR low is to

introduce automated redundancy and failover, as discussed in sections 5.4.1 and

5.4.2.

4.2.2 Some calculation examples

Decreasing MTTR and increasing MTBF both increase availability. Dividing

MTBF by the sum of MTBF and MTTR results in the availability expressed as

a percentage: Availability =
MTBF

(MTBF+MTTR)
× 100%.

For example:

55

A power supply's MTBF is 150,000 hours. This means that on average this

power supply fails once every 150,000 hours (= once per 17 years). If the time

to repair the power supply is 8 hours, the availability can be calculated as

follows: Availability =
150,000 hours

(150,000 hours+8 hours)
× 100% = 99.99466 %

This means that because of the repair time alone this component can never reach

an average availability of 99.999%! To reach five nines of availability the repair

time should be as low as 90 minutes for this component. Note that if a downtime

of 99.999% is acceptable per year (and not over the total lifetime of the

component), the repair time must be lower than 6 minutes!

As system complexity increases, usually availability decreases. When a failure

of any one part in a system causes a failure of the system as a whole, the

availability is called serial availability. To calculate the availability of such a

complex system or device, multiply the availability of all its parts.

For example, a server consists of the following components and the MTTR of

any part of the server is 8 hours.

Figure 13: System with serial components

Component MTBF (h) MTTR (h) Availability in %

Power supply 100,000 8 0.9999200 99.99200

Fan 100,000 8 0.9999200 99.99200

System board 300,000 8 0.9999733 99.99733

Memory 1,000,000 8 0,9999920 99.99920

CPU 500,000 8 0.9999840 99.99840

Network Interface

Controller (NIC)
250,000 8 0.9999680 99.99680

Table 4: Availability in percentages

The availability of the total server is: 0.9999200 × 0.9999200 × 0.9999733 ×

0.9999920 × 0.9999840 × 0.9999680 = 0.9997733 = 99.977%. This is lower

than the availability of any single component in the system. Therefore, the more

components a system includes (and each component is critical for the total

system), the lower the total availability becomes.

To increase the availability, systems (composed of a various components) can

be deployed in parallel. This considerably increases the availability, since the

56

combined system no longer contains a Single Point Of Failure. If one component

becomes unavailable, the affected system goes down, but the other system can

take over. Consider the example below. Two systems run in parallel, each

complete system having an availability of 99%.

Figure 14: Two systems in parallel

The chance of both systems being unavailable at the same time is very small and

can be calculated as follows3:

𝐴𝑇 = 1 − ∏(1 −

𝑛

𝑖=1

𝐴𝑖)

where

𝐴𝑇 is the total availability of the configuration

𝑛 is the total number of systems in parallel

𝐴𝑖 is the availability of the i-th system

As an example, let’s assume an organization uses two internet connections, each

from another provider. The first is their primary connection, which has an

average uptime of 99.99%. The second connection is the backup connection in

case the first one fails. This one has an average uptime of 99.9%. This leads to

a combined uptime of:

1 − (1 − 0.9999) × (1 − 0.999) = 0.9999999 (or 99.99999%), which is

significantly higher than each of the individual connections.

Another example: when the availability for each system is estimated to be 99%,

the combined availability in a parallel setup is:

Situation Availability Yearly downtime

1 system 99% 87h 36m

2 systems 99.99% 52m

3 systems 99.9999% 32s

57

Table 5: Availability with multiple components

In this situation, it is important to have no single point of failure that combines

the set of systems (for instance, all systems run on the same power supply). In

that case, the availability of the system is fully dependent on that one

component.

It is often not useful to have more than two systems to achieve high availability.

Studies4 show that having dual redundancy for a system is sufficient because

other components of the system, such as human error from system

administrators, have orders of magnitude worse MTBF. Therefore, adding a

(costly and complex) third system would be cancelled out by unavailability due

to other causes. Triple redundancy would not increase the overall availability

of the system, but actually decrease it, due to the complexity of its application.

SKIPPED TEXT

4.2.3 Scalable cloud environments

In cloud environments, there is often no need to guess the required capacity.

Since resources such as virtual machines are easily scalable in cloud

environments, you can simply start with a large system and scale down if the

system is underutilized. Or vice versa: Start with a small system and scale up

until the performance is acceptable.

Of course, this only works well if you can reliably measure system performance.

Fortunately, cloud environments usually have very extensive logging and

monitoring capabilities to help with this.

4.3 Performance of a running
system

4.3.1 Managing bottlenecks

The performance of a system is based on the performance of all its components,

and the interoperability of various components. Therefore, measuring the

performance of a system only has value if the complete system is taken into

58

account. For instance, building an infrastructure with really fast networking

components has little benefits when the used hard disks are slow.

A performance problem may be identified by slow or unresponsive systems.

This usually occurs because of high system loads, causing some component of

the system to reach some limit. This component is referred to as the bottleneck

of the system, because the performance or capacity of the entire system is

limited by a single component, slowing down the system as a whole. To find

this bottleneck, performance measurements are needed.

Only when we know where in the system the bottleneck occurs, we can try to

improve performance by removing that bottleneck.

When a bottleneck is removed, usually another bottleneck arises. In fact, no

matter how much performance tuning is done, there will always be a bottleneck

somewhere. According to the Bottleneck law5, every system, regardless of how

well it works, has at least one constraint (a bottleneck) that limits its

performance. This is perfectly fine when the bottleneck does not negatively

affect the performance of the entire system to the point where the stated

performance requirements are no longer met.

Benchmarking is a way to measure individual components, while system

performance tests measure the system as a whole.

4.3.2 Performance testing

There are three major types of performance tests for testing complete systems:

• Load testing - This test shows how a system performs under the

expected load. It is a check to see if the system performs well under

normal circumstances.

• Stress testing - This test shows how a system reacts when it is under

extreme load. Goal is to see at what point the system "breaks" (the

breakpoint, as shown in Figure 18) and where it breaks (the

bottleneck).

• Endurance testing - This test shows how a system behaves when it is

used at the expected load for a long period of time. Typical issues that

arise are memory leaks, expanding database tables, or filling up disks,

leading to performance degradation.

59

Figure 18: Performance breakpoint

Performance testing software typically uses one or more servers to act as

injectors – each emulating a number of users that run a sequence of interactions

(recorded as a script, or as a series of scripts to emulate different types of user

interaction). A separate server acts as a test conductor, coordinating the tasks,

gathering metrics from each of the injectors, and collecting performance data

for reporting purposes.

The usual sequence is to ramp up the load – starting with a small number of

virtual users and increasing the number over a period of time to some maximum.

The test result shows how the performance varies with the load, given as number

of users versus response time.

A cloud environment is ideal for setting up performance testing environments

because it can be scaled up to provide the required load and then scaled down

after the test is complete. This can reduce the cost of running a performance test

while simulating a very large number of users during the test period.

Performance testing should be done in a production-like environment.

Performance testing in a development environment usually produces results that

have little meaning for what is likely to happen in production. To reduce costs,

it is sometimes advisable to use a temporary test environment, such as one rented

from your hardware vendor that has the same components as the production

environment. If the test environment is underpowered (the machines are not as

fast as production, the disks are of a different type, etc.), the test results cannot

be relied upon because they are not comparable to the production environment.

Even if the underpowered test systems perform well enough to get good test

results, the faster production system may have performance issues that were not

experienced in the tests.

60

I have experienced such a situation: A production system was much faster than

the test system we used. While the tests showed no performance issues on the

slower test system, the application performed badly on the faster production

systems.

The reason was a network protocol that could not receive network packages as

fast as the production systems could provide it.

4.4 Performance patterns

There are various ways to improve the performance of systems. This section

describes caching, scaling, load balancing, high performance computing,

designing for performance, and capacity management.

But first a quick word on increasing performance on other levels than the

infrastructure.

4.4.1 Increasing performance on upper
layers

Experience learns that 80% of the performance issues are due to badly behaving

applications. While much effort can be put in optimizing infrastructure

performance, it is good practice to first check for performance optimizations in

the upper layers. Database and application tuning typically provides much more

opportunity for performance increase than installing more computing power.

I have seen a management report that used to run for 45 minutes. After tuning

the database, it ran in 3 minutes, just by optimizing some SQL queries and

adding a database index. Increasing the performance that much in the

infrastructure layer instead is not only very complicated but also very

expensive!

Another example was a badly programmed application where each read and

write to disk opened and closed the file, instead of opening the file at the start

of the application and keeping it open until the application is stopped.

Since opening and closing files is much slower than the actual reading or

writing of data, just keeping files open vastly increased the performance of the

application.

61

Application performance can benefit from prioritizing tasks, working from

memory as much as possible (as opposed to working with data on disk), and

making good use of queues and schedulers.

Of course, bad behaving applications can only be fixed when you have access

to the application's source code. For commercial off-the-shelf software, this is

usually not feasible. Tuning the databases used by the application, by for

instance adding indexes, can be an opportunity to significantly improve

performance. Fortunately, today’s databases use automated query optimizing,

where the performance of often used queries automatically gets better over time.

In the current era of multi-core processors, it is important for application

developers to understand how applications work on a multithreaded system.

Unfortunately, this is not always the case and many applications run on only one

of the available cores of the CPU.

Intel introduced circuitry in its processors that can boost the clock speed of one

of the cores when a running single threaded application is detected. This boost

of the clock speed would normally introduce too much heat in the processor, but

since the other cores are not performing any work in a single threaded

application, the overall temperature of the CPU stays within range.

4.4.2 Caching

Caching improves performance by retaining frequently used data in high-speed

memory, reducing access times to data.

Some sources that provide data are slower than others. The approximate speed

of retrieving data from various sources is shown in Table 8.

Component
Time it takes to fetch 1 MB of

data (ms)

Network, 1 Gbit/s 675

Hard disk, 15k rpm, 4 KB disk blocks6 105

Main memory DDR3 RAM7 0.2

CPU L1 cache8 0.016

Table 8: Approximate speeds of fetching data

Especially in situations where retrieving data takes relatively long (for instance

reading from hard disk or from the network), caching in memory can

significantly improve performance.

62

4.4.2.1 Disk caching

Disks are mechanical devices that are relatively slow by nature. To speed up the

reading of data from disk, disk drives contain cache memory. This cache

memory stores all data recently read from disk, and some of the disk blocks

following the recently read disk blocks. When the data is read again, or (more

likely) the data of the following disk block is needed, it is fetched from high-

speed cache memory.

Disk caching can be implemented in the storage component itself (for instance

cache used on the physical disks or cache implemented in the disk controller),

but also in the operating system. The general rule of thumb that adding memory

in servers improves performance is due to the fact that all non-used memory in

operating systems is used for disk cache. Over time, all memory gets filled with

previously stored disk requests and prefetched disk blocks, speeding up

applications.

4.4.3 Web proxies

Another example of caching is the use of web proxies. When users browse the

internet, instead of fetching all requested data from the internet each time, earlier

accessed data can be cached in a proxy server and fetched from there. This has

two benefits: users get their data faster than when it would be retrieved from a

distant web server, and all other users are provided more bandwidth to the

internet, as the data did not have to be downloaded again.

4.4.4 Operational data store

An Operational Data Store (ODS) is a read-only replica of a part of a database

for a specific use. Instead of accessing the main database for retrieving

information, often used information is retrieved from a separate small ODS

database, not degrading the performance of the main database.

A good example of this is a website of a bank. Most users want to see their actual

balance when they login (and maybe the last 10 mutations of their balance).

When every balance change is not only stored in the main database of the bank,

but also in a small ODS database, the website only needs to access the ODS to

provide users with the data they most likely need. This not only speeds up the

user experience, but also decreases the load on the main database.

63

4.4.5 Front-end servers

In web facing environments storing most accessed (parts of) pages on the web

front-end server (like the static pictures used on the landing page) significantly

lowers the amount of traffic to back-end systems. Reverse-proxies can be used

to automatically cache most requested data as well.

4.4.6 In-memory databases

In special circumstances, entire databases can be run from memory instead of

from disk. These so-called in-memory databases are used in situations where

performance is crucial, like in real-time SCADA systems and in high

performance online transaction processing (OLTP) systems. Of course, special

arrangements must be made to ensure data is not lost when a power failure

occurs.

As an example, SAP HANA is an in-memory database for SAP enterprise

resource planning (ERP) systems.

4.4.7 Edge servers

The major cloud providers have datacenters around the world. In addition, they

often offer edge locations. These edge locations can be used to cache data in

close proximity to end users.

For example, a Web site that offers streaming videos can place copies of those

videos in a number of edge locations around the world to ensure a good user

experience for users in all locations.

SKIPPED TEXT

4.5 Cloud security

The public cloud follows a shared responsibility model. In this model, the cloud

provider takes care of security of the cloud, and the customer takes care of

security in the cloud. Table 9 shows this sharing of responsibilities. Depending

on the cloud deployment model used, the separation of responsibilities differs.

64

 On-

premises

IaaS PaaS SaaS

Data classification Client Client Client Client

Application configuration Client Client Client Client

Identity & Access Client Client Client Client

Application Client Client Client Cloud

Operating system Client Client Cloud Cloud

Compute Client Cloud Cloud Cloud

Storage Client Cloud Cloud Cloud

Network Client Cloud Cloud Cloud

Physical security Client Cloud Cloud Cloud

Table 9: Shared responsibility model: Client versus Cloud provider

Although some people express doubts about the security of the public cloud, in

practice it turns out that the public cloud is very secure. All components in the

public cloud are designed with security in mind. A lot is invested in security by

the cloud providers and a large number of specialists work daily to optimize

cloud security. Few organizations can achieve such a high level of security in

their own datacenter. So, the main question is: Do you really think you can do

better yourself?

So, while the cloud is very secure, it can easily become insecure through

incorrect use or configuration errors. An example is a virtual machine in Azure.

These are given a public IP address by default. This makes the VM easy to find

from the internet and gives hackers a chance to attack it. Therefore, when

creating a new VM, either the public IP address must be disabled, or access to

the IP address must be blocked with a firewall. By the way, a VM in AWS does

not have a public IP address by default.

4.6 Security Patterns

Information can be stolen in many ways. Here are some of the more common

ways related to infrastructure that you should be aware of:

• Key loggers can be maliciously installed on end user devices. They

can send sensitive information like passwords to third parties.

• Network sniffers can show network packages that contain sensitive

information or replay a logon sequence by which a hacker can

successfully authenticate to an IT system.

• Data on backup tapes outside of the building can get into wrong

hands.

65

• PCs or disks that are disposed of can get into the wrong hands.

• Corrupt or dissatisfied staff can copy information.

• End users are led to a malicious website that steals information (also

known as phishing).

To deal with these risks, proper security processes must be put in place, based

on the prevention of security problems, the detection of security breaches as

soon as they occur, and the responsive actions to be taken to minimize damage

and restore operations.

4.6.1 Prevention

4.6.1.1 Security policies

Managing security is all about managing risks. If there are no risks, we don't

need any security controls. The effort we put in securing the infrastructure

should therefore be directly related to the risk at hand. Risk can be mitigated.

Here are some techniques to make data secure:

• Design for minimum risk. Design the system to eliminate as much

vulnerabilities as possible. This can for instance be done using source

code analysis in software development and by running critical

systems stand-alone instead of connected to other systems.

• Incorporate safety devices. Reduce risk using devices like firewalls

and hardened screened routers. These devices usually don’t affect the

probability, but reduce the severity of an exploit: an automobile seat

belt doesn’t prevent a collision, but reduces the severity of injuries. A

firewall does not prevent attacks, but reduces the chance of an

attacker connecting to sensitive parts of the network.

• Implement training and procedures. These can mitigate risks that

are people-bound like social engineering attacks.

Ensure that appropriate security processes are in place and regularly tested. It

should be clear who is responsible for security monitoring, what should happen

if a security incident is detected, and what security processes should be followed

before new or modified software is put into production.

In addition, it is often possible to have security policies monitored

automatically. Cloud providers in particular often provide options to enforce and

monitor policies for all cloud resources in use. There are sets of predefined

policies available, such as the CIS benchmarks9. These are general best

practices, for operating systems, network components, desktops, virtualization

platforms and cloud services, among others. CIS benchmarks can be

66

implemented and monitored manually, but they can also be enforced

automatically in, for example, a public cloud environment.

4.6.1.2 Zero Trust

Zero trust is a security framework that moves defense from network perimeters

to a combination of users, resources and locations (who wants to use what and

where). Zero trust does not trust people and systems based on their location, but

requires all users, inside or outside the organization's network, to be

continuously authenticated, authorized and validated before being granted

access to applications and data.

Zero Trust assumes that there is no traditional network edge; networks can be

local, in the cloud, or hybrid with users in any location.

A zero trust architecture includes continuous multi-factor authentication,

network micro-segmentation, encryption, endpoint security, analytics and

robust auditing.

Zero trust became popular as a response to hybrid cloud environments, where

data is stored both on-premises and in public clouds and where users must be

able to access the data securely from any location.

4.6.1.3 Segregation of duties and least privilege

Segregation of duties (also known as separation of duties) assigns related

sensitive tasks to different people or departments. The reasoning is that if no

single person has total control of the system’s security mechanisms, no single

person can compromise the system.

This concept is related to the principle of least privilege. Least privilege means

that users of a system should have the lowest level of privileges necessary to

perform their work, and should only have them for the shortest length of time.

In many organizations, a systems manager has full control over the system’s

administration and security functions. In general, this is a bad idea. Security

tasks should not automatically be given to the systems manager. In secure

systems, multiple distinct administrative roles should be configured, like a

security manager, a systems manager, and a super user.

The security administrator, the system administrator and the super user do not

necessarily have to be different people (but that is of course preferable). But

when, for example, a system administrator takes on the role of the security

administrator, this role change is monitored, logged and audited. Although it

may be inconvenient for the person to switch from one role to another, the roles

are functionally distinct and must be performed as such to maintain a high level

of security.

67

In addition, a two-man control policy can be applied, in which two systems

managers must review and approve each other’s work. The purpose of two-man

control (also known as the four eyes principle) is to minimize fraud or mistakes

in highly sensitive or high-risk transactions. With two-man control, two systems

managers are needed to complete every security sensitive task.

4.6.1.4 Privileged Access Management (PAM)

Privileged Access Management (PAM) is a network component that provides

secure access to systems or parts of systems (such as databases) by users who

require high privileges.

An example is the administrator or root account of an operating system. Under

normal circumstances, this account is never used for day-to-day tasks, even by

systems administrators. In exceptional cases, however, these accounts may be

needed. In this case, the systems manager does not log into the operating system

directly, but logs into a PAM system with his own credentials, using multi-factor

authentication. The PAM has a password vault and uses the administrator or

root password to log into the required operating system on behalf of the user.

The user can then perform the intended work. When finished, the user logs out

of the PAM and the PAM immediately changes the administrator or root

password. This way, the user will never know what the password was or what

the new password is.

All actions on a PAM system are logged for auditing purposes. As an additional

feature, many PAM systems can log all keystrokes to audit logs, and it is

sometimes possible to automatically capture a video of the actions on the screen.

4.6.1.5 Layered security

A layered security strategy is a good practice to enhance the overall IT security.

The essence of layered security (also known as a Defense-In-Depth strategy) is

to implement security measures in various parts of the IT infrastructure. This

approach is comparable with physical security.

If a burglar wants to steal money from your house, he has to climb over the

fence in the garden, then he has to get through a closed front door with locks,

then he has to find the safe with the money, he has to break into the safe, get the

money, and leave the premises. All of this must be done without being seen or

heard; he must not be noticed by anyone during all of these steps.

It is obvious why this layered security works so well:

- Many barriers must be crossed (fence, door, safe).

68

- Opening every barrier takes different technical skills (climbing over the fence,

lock picking a door with a mechanical lock, opening a safe with a digital lock).

- The burglar is slowed down by every barrier he tempts to cross, which

increases the possibility of detection.

- The burglar doesn't know in advance how many barriers he has to cross, how

much time each barrier takes, and which knowledge is needed for every barrier.

- The chance of getting caught is present in every step.

- When one barrier is crossed, the security of all other barriers is still intact.

In IT infrastructure, instead of having one big firewall and have all your security

depend on it, it is better to implement several layers of security. Preferably these

layers make use of different technologies, which makes it harder for hackers to

break through all barriers; they will need a lot of knowledge for each step.

Each layer can be integrated with an Intrusion Detection System (IDS – see

section 7.5.2.2) or some other system that detects break-ins, which increases the

chance of getting caught. On top of this, more layers introduce uncertainty for

the hacker: it is unknown many barriers must be passed to get to the data, and

how long will this take, leading to demotivation. And if one layer is passed

unnoticed, or if one security layer contains a vulnerability, the total security is

still intact, albeit with less layers.

A disadvantage of implementing layered security is that it increases the

complexity of the system. Every security layer must be managed, and systems

managers must have knowledge about all used technologies.

SKIPPED TEXT

69

Picture 4: Computer racks10

More flexible air cooling replaced the traditional water cooling and

sophisticated fire prevention, detection and extinguishing systems were

installed. Because almost all work on the servers could now be done without

touching the physical equipment, lights-out datacenters were introduced, where

during normal operations no people are needed inside the datacenter, and the

lights could thus be switched off.

The pace of innovation in datacenters is increasing, driven by cloud service

providers and large-scale datacenters running internet applications like search

engines, video streaming, and social media.

Very large datacenters today contain shipping containers packed with thousands

of servers each. When repairs or upgrades are needed, entire containers are

replaced (rather than repairing individual servers).

4.7 Datacenter building blocks

4.7.1 Datacenter categories

A datacenter can occupy one room in a building, one or more floors, or an entire

building. Below are four typical datacenter categories.

• Sub Equipment Room (SER) – a SER is also known as a patch

closet. They contain patch panels for connections to wall outlets in

offices and some small equipment like network switches.

70

• Main Equipment Room (MER) – a MER is a small datacenter in the

organization’s subsidiaries or buildings.

• Organization owned datacenter – a datacenter that contains all

central IT equipment for the organization. An organization can have

multiple datacenters, often with failover and fallback capabilities.

• Multi-tenant datacenter (also known as co-location) – this

datacenter category is owned by service providers that provide

services for multiple other organizations.

If the datacenter is used for one organization only, it makes sense to install the

datacenter inside one of the office buildings. But when the datacenter is used by

multiple organizations, like in case of an internet service provider, choosing a

location of the datacenter is more difficult.

4.7.2 Cloud datacenters

Cloud datacenters that are owned by large public cloud providers are also called

hyperscaler datacenters, since they are hosting a very large number of servers,

networking equipment and storage systems. Datacenters of large public cloud

providers like Amazon Web Services (AWS), Microsoft Azure and Google

Cloud Platform (GCP) are amongst the world's largest building sites. As an

example, a typical Google datacenter occupies more than 185,000 m2 (2 million

square feet) of usable space – the size of 26 soccer fields11. Figure 27 shows a

picture of the Google datacenter in Council Blufs, IA, USA. Google invested $5

billion in that datacenter site alone12.

Figure 27: Google datacenter in Council Blufs, IA13

71

Obviously, these datacenters use an enormous amount of power. As an example,

most Amazon datacenters house between 50,000 and 80,000 servers, with a

power capacity of between 25 and 30 megawatts14.

4.7.3 Location of the datacenter

Finding a good location to build a datacenter can be a nontrivial task. Many

variables should be considered to determine where a datacenter could be

installed.

Below is a checklist that can be used as guidance when choosing a location for

a datacenter:

• Environment

o Is enough space available to expand the datacenter in the

future? The initial datacenter should be designed with

enough free space and spare capacity in utilities to allow for

growth.

o Is the location vulnerable to flooding? Some countries are

below sea level, are in a vulnerable delta, or are close to a

river. In that case make sure the datacenter is not located at

the ground floor or (worse) the basement, but for instance on

the third floor.

In 2015, outside of the Amsterdam AMC hospital a large water supply pipe

broke. The water flooded not only the ground floor of the hospital, but also the

basement, that hosted steam systems needed to sterilize the hospital’s tools. All

patients in the hospital were evacuated immediately and the hospital was closed

for two weeks, leading to multi-million-dollar damages.

Later, the hospital management acknowledged that putting critical systems in

the basement was a design flaw in the building’s architecture.

o Is the datacenter located in a hurricane prone area?

o What is the chance of an earthquake?

o What is the climate like? Datacenter cooling can be easier

accomplished and is much cheaper in places with a low

ambient temperature with low temperature fluctuations.

o Is the datacenter close to possible external hazards like

fireworks storage, a waste dump, or a chemical plant?

72

o What is the crime rate? Are there many burglaries in the

neighborhood? What about vandalism or the possibility of

terrorism?

o Is the datacenter near an airport (chance of crashing

airplanes)?

o Is the datacenter near an area that is likely to be closed

because of unforeseen circumstances (like a car crash on a

nearby highway, a forest fire, a military location, or a

nuclear plant)?

o Is the location close to the home or office of maintenance

staff, systems managers, and external expertise?

o Can the datacenter be reached easily in case of emergencies?

o Are hospitals, police, and fire fighters located in the

vicinity?

• Visibility

o Is the location of the datacenter included in public maps (like

http://www.datacentermap.com)?

o Does the building have windows? Windows are not

preferred as they are easy to break into the building.

o Are markings on the building showing that this building

contains a datacenter?

• Utilities

o Is it possible to have two independent power providers and

internet providers?

o Can cabling routes to the building be determined? Is it

possible to have double power and data connections leave

the building from two different places?

o Can cabling routes inside the building be determined in a

flexible way? Are there multiple paths available to the patch

panels, floors, and end users?

o Is the datacenter located in a shared building? What if the

building must be evacuated? What if the power must be shut

down due to maintenance activities performed by another

user of the building?

o Is enough power available to supply the datacenter? How

reliable is the power supply?

http://www.datacentermap.com/

73

o Is cheap power available? Can the datacenter use renewable

energy like wind or water generated power?

o What is the available bandwidth of the external data

connections? Is the datacenter close to an internet exchange

point? Are dark fiber connections possible? How reliable are

the data connections?

• Foreign countries

o Can the country be reached at all times?

o Is the country politically stable? Are there specific laws and

regulations you need to adhere to or be aware of?

o Does the country have a high level of corruption? How

reliable is the staff?

o What is the legal status of the data and the datacenter itself?

4.7.4 Physical structure

The physical structure of a datacenter includes floors, wall, windows, doors, and

water and gas pipes. These components, together with the layout of the rooms

around the actual computer room, are discussed in this section.

4.7.4.1 Floors

In datacenters, the floor is quite important, mostly because of the weight of the

installed equipment. In a typical datacenter, the floor must be able to carry 1500

to 2000 kg/m2. For instance, one fully filled 19” computer rack weighs up to

700 kg. The footprint of a rack is about 60x100 cm, leading to a floor load of

1166 kg/m2. By comparison, in office buildings typically the floor can carry

approximately 500 kg/m2.

Many datacenters have raised floors. Raised floors consist of a metal framework

carrying removable floor tiles. These tiles are usually 60×60 cm in size. Tiles

can be lifted individually to reach cables installed under the raised floor. To lift

the tiles, a "floor puller" or "tile lifter" is used, as shown below.

74

Picture 5: Removable tiles in a raised floor

Raised floors are typically installed at heights between 40 cm and 120 cm. Vents

in the raised floor provide cool air flow to the racks placed on the floor. Under

the raised floor, data and power cables are installed (usually in cable trays).

It is important to keep data cables and power cables separated from each other,

as electrical current flowing through the power cables can interfere with data

being sent through the data cables. A rule of thumb is to keep one phase

electricity and data 20 cm apart from data cables, and 3 phase power and data

cables 60 cm apart.

Not all datacenters use raised floors anymore, since raised floors have the

following disadvantages:

• Raised floors are expensive.

• The total available height in the datacenter is decreased, which could

lead to regulation problems and problems installing large equipment.

• The maximum floor load is limited.

• Doors and equipment loading slopes are hard to install due to the

difference in floor height.

• Under the raised floor, fire, such as from a short circuit, could easily

spread throughout the datacenter.

Instead of installing cables under raised floors, overhead cable trays can be used.

In either situation, cable trays can be installed with several layers. For instance,

the bottom layer can be used for data copper UTP cables, the middle layer for

fiber cables, and the top layer for power cables.

75

4.7.4.2 Walls, windows, and doors

Because of fire safety and physical intrusion prevention, walls should reach

from the floor to the building’s ceiling. Walls should have an adequate fire rating

to serve as a physical firewall.

Windows in the outside of the building, facing the computer room, are not

desirable in a datacenter. If they are present however, they must be translucent

and shatterproof, and it must be impossible to open them.

Doors in the datacenter must resist forced entry and have a fire rating equal to

the walls. Emergency exits must be clearly marked, monitored, and alarmed.

Doors should be large enough to have equipment brought in, with a minimal

width of 1 m and a minimal height of 2.10 m.

4.7.4.3 Water and gas pipes

When the datacenter is part of a larger building, water or gas pipes may have

been installed under the floor, in the walls, or (even worse) above the ceiling of

the datacenter. At multiple occasions, I have seen leakage from water pipes in

the ceiling of a datacenter that led to damage of equipment. Datacenter operators

should know where the shutoff valves are to water or gas pipes in the building.

SKIPPED TEXT

4.8 Networking building blocks

4.8.1 OSI Reference Model

The architecture of almost every network is based on the Open Systems

Interconnection (OSI) standard reference model. The OSI Reference Model

(OSI-RM) was developed in 1984 by the International Organization for

Standardization, a global federation of national standards organizations

representing approximately 130 countries.

A host or node is a component on the network, like a server, a router, a switch

or a firewall. The OSI-RM consists of a set of seven layers that define the

different stages that data must go through to travel from one host to another over

a network. Figure 40 shows these seven layers, including some examples of

implementations of that layer.

76

Figure 40: OSI layers

The layers can easily be recalled using the mnemonic:

People Do Need To See Pamela Anderson,

where the first letter of each word is the first letter of each layer, starting from

layer one.

The main benefit of implementing the OSI stack is that it allows implementing

network components independently of each other, while still ensuring all

components work together. For instance, TCP/IP, which is used to send

information over the internet, comprises the TCP protocol in layer 4 with the IP

protocol in layer 3. Without changing the IP protocol, an UDP/IP stack can be

used as well, by just changing the level 4 protocol from TCP to UDP.

Because each layer in the OSI stack can be implemented independently from the

layer below and above. This provides freedom to implement the network stack

77

in an optimal way for a certain usage. For instance, local area networks use

different building blocks than wide area networks or the internet.

Each layer’s payload contains the protocol for the next layer. Consider the

example in Figure 41.

Figure 41: Frames embedded in each other

Figure 41 shows an Ethernet frame with an IP packet in it, with a TCP segment

in it, with a HTTP command in it. The nesting of these protocols allows sending

HTTP traffic (like web pages) to another computer using an Ethernet network

in a reliable way.

This chapter is organized based on the OSI model, starting from the bottom layer

and working up to the top of the stack. For each layer the most used

implementations are discussed.

4.8.2 Physical layer

The physical layer defines physical hardware components of the network, such

as Network Interface Controllers (NICs), copper and fiber optic cables, leased

lines, cable internet, and DSL.

4.8.2.1 Cables

At the most elementary level, networking is about cables. In early networks coax

cables were used to interconnect computers, but most copper-based cables today

are of the twisted pair type. Apart from copper cabling, fiber optic cabling is

used quite often as well.

78

4.8.2.1.1 Twisted pair cables

Twisted pair cables consist of paired insulated wires that are twisted around each

other to prevent interference. A cable contains multiple wire pairs, that can be

shielded (Shielded Twisted Pair - STP) or unshielded (Unshielded Twisted Pair

- UTP). UTP is the most common cable in networking today.

Picture 11: UTP cable

Having separate pairs of wires for transmitting data (TX) and receiving data

(RX) allows for full duplex communication. Full duplex communication means

that data may be transmitted and received by a host at the same time.

UTP comes in several quality ratings called categories. The rating is based on

how tightly the copper wires are intertwined: The tighter the wind, the higher

the rating and its resistance to interference and attenuation. This resistance to

interference is crucial for providing higher data rates. Table 12 shows a list of

today’s most used categories and their maximum bandwidth.

Category Maximum bandwidth

5 or 5e 1 Gbit/s

6 10 Gbit/s

7 10 Gbit/s

8 40 Gbit/s

Table 12: Twisted pair cables and their bandwidth

4.8.2.1.2 Coax cable

Coax cable consists of an inner conductor surrounded by a flexible, tubular

insulating layer, surrounded by a tubular conducting shield.

79

Picture 12: Coax cable15

Historically, coax cable provided the highest bandwidth possible in copper

cabling. It is still heavily used by cable companies, but improvements in UTP

and STP cables allow higher bandwidths, eliminating coax cables for most other

uses.

4.8.2.1.3 Fiber optic cable

A fiber optic cable contains multiple strands of fiber glass or plastic, that each

provide an optical path for light pulses. The light source can either be a light-

emitting diode (LED) or a laser.

The maximum transmission distance depends on the optical power of the

transmitter, the optical wavelength utilized, the quality of the fiber optic cable

and the sensitivity of the optical receiver.

Two types of fiber optic cable are most common:

• Multi-Mode Fiber (MMF)

• Single Mode Fiber (SMF)

SMF is used for long distance communication (up to 80 km), and MMF is used

for distances of 500m or less, typically used in the datacenter or on a campus

setup.

Light waves in Multi-Mode Fiber (MMF) are dispersed into numerous paths,

also known as modes, as they travel through the cable's core – hence the name.

80

Figure 42: Multi-Mode Fiber

Single-Mode Fiber (SMF) is designed to carry only a single narrow band of ray

wavelengths of light (a single mode).

Figure 43: Single-Mode Fiber

SMF requires a light source with a narrow spectral width (typically a laser).

SMF has a much smaller core than MMF. The small core and single light-wave

virtually eliminates any distortion that could result from overlapping light

pulses, providing transmissions over long distances. SMF is more expensive

than MMF, not only because of cable costs, but also because of the more

expensive interface cards needed to send a single ray of light.

Using one light source, the maximum bandwidth of a fiber optics cable (both

MMF and SMF) is approximately 10 Gbit/s. Using Dense Wavelength-Division

Multiplexing (DWDM) the capacity of fiber optics cables can be extended. By

using multiple light sources, each having a distinct color (wave length), multiple

channels can travel though the fiber optics cable simultaneously. This way up

to 80 channels can be created, leading to a total bandwidth of 800 Gbit/s for a

single strand of fiber cable.

SKIPPED TEXT

4.9 Storage building blocks

Servers can use internal storage, but most use external storage, sometimes

combined with internal storage. A model of storage building blocks is shown in

Figure 70. Each building block is discussed in detail in de subsequent sections,

starting at the lowest building blocks.

81

Figure 70: Storage model

4.9.1 Disks

Two types of disks are in use today:

• Mechanical hard disks

• SSD disks

Disks are connected to disk controllers using a command set, based on either

ATA or SCSI.

4.9.1.1 Command sets

Disks communicate with disk controllers using a protocol based on either the

ATA or SCSI command set.

82

Advanced Technology Attachment (ATA), also known as IDE, uses a relatively

simple hardware and communication protocol to connect disks to computers

(mostly PCs). For many years, ATA provided the most common and the least

expensive disk interface.

Small Computer System Interface (SCSI) is a set of standards for physically

connecting and transferring data between computers (mostly servers) and

peripheral devices, like disks and tapes. The SCSI standard defines command

sets for specific peripheral device types. The SCSI command set is complex -

there are about 60 different SCSI commands in total.

The need for increased bandwidth and flexibility in storage systems made the

original parallel SCSI and ATA standards an inefficient option. Serial interfaces

replaced the parallel interfaces, but the disk commands are still the same.

4.9.1.2 Mechanical hard disks

Mechanical disks consist of vacuum sealed cases with one or more spinning

magnetic disks on one spindle and a number of read/write heads that can move

to reach each part of the spinning disks. Picture 19 shows a mechanical hard

disk with its cover removed,

Picture 19: Hard disk internal mechanical construction

In today’s systems, three mechanical (spinning) disk types are most common,

depicted by their used interface:

• Serial ATA (SATA) disks

• Serial Attached SCSI (SAS) disks

• Near-Line SAS (NL-SAS) disks

83

SATA disks are low-end high-capacity disks. SATA disks are ideal for bulk

storage applications (like archiving or backup) as they have a low cost per

gigabyte. SATA disks are also often used in PCs and laptops. SATA disks use

the SMART command set to control the disk. This command set is limited, but

easy to implement.

SAS disks are relatively expensive, high end disks with spinning disk platters

with a rotational speed of 10,000 or 15,000 rpm. This makes them very fast, but

they typically have 25% of the capacity of SATA or NL-SAS disks.

SAS disks are high-end disks, because they have better error correction

capabilities than SATA disks, and can move erroneous disk sectors to spare

sectors automatically, making the disks very reliable. In addition, SAS uses the

SCSI command set that includes error-recovery and error-reporting and more

functionality than the SMART commands used by SATA disks.

NL-SAS disks have a SAS interface, but the mechanics of SATA disks. Because

NL-SAS disks use the SAS protocol, they can be combined with faster SAS

disks in one storage array. They are used for bulk storage applications as they

can store much data, have a low cost per gigabyte and use much less energy than

SAS disks, as they typically spin at just 7,200 rpm.

4.9.1.3 Solid State Drives (SSDs)

A Solid State Drive (SSD) is a disk that doesn’t have moving parts and is based

on flash technology. Flash technology is semiconductor-based memory that

preserves its information when powered off. SSDs are connected using a

standard SAS disk interface.

SSD’s main advantage is performance. SSDs have no moving parts, so data can

be accessed much faster than using mechanical disks (microseconds vs.

milliseconds). Most storage vendors now offer all-flash arrays – storage systems

using only SSD disks. For high-demanding Online Transaction Processing

(OLTP) systems, these all-flash arrays are the preferred choice today, because

of their high performance.

84

Picture 20: SSD disk16

SSDs consume less power, and therefore generate less heat, than mechanical

disks. And since they have no moving parts, they generate no vibrations that

could influence or harm other components, or shorten their lifetime.

The main disadvantage of SSDs used to be their price per gigabyte, which was

significantly higher than that of mechanical drives. But since 2020, the prices of

SSDs have fallen to the point where they are about the same price as mechanical

drives. In the coming years, mechanical drives are expected to be used only as

cheap, low-end storage for applications such as archiving.

Another disadvantage of SSD is that the used flash memory can only be

rewritten a limited number of times – the disks “wear out” more rapidly than

mechanical disks. To overcome this disadvantage, SSDs keep track of the

number of times a sector is rewritten, and map much used sectors to spare

sectors if they are about to wear out. It is important to monitor the wear level of

heavily used SSDs, so they can be replaced before they break.

Some SSDs utilize RAID technology internally (RAID is discussed in section

10.2.3.1), to distribute data over the available flash chips on the SSD disk. The

more RAID channels are available, and the bigger the number of flash chips, the

faster the SSD disk can deliver data and the more reliable the SSD becomes.

Today’s Non-Volatile Memory Express (NVMe) drives are capable of

delivering hundreds of thousands of read/write operations and gigabytes of

throughput per second. Because of this high speed, NVMe-based SSD disks are

often connected directly through the PCIe bus, rather than through a separate

disk controller. Technology is moving fast in this area, so more advanced flash

storage technologies are expected in the forthcoming years.

85

4.9.1.4 Disk capacity - Kryder's law

Since the introduction of the first disk drives, physical disk sizes shrunk and

disk capacity increased every year.

Figure 71 shows that the average disk capacity has followed a logarithmic

increase in size for the last 30 years (note that the Y-axis is logarithmic instead

of linear).

Figure 71: Kryder’s law17

Kryder's law18 states that "the density of information on hard drives has been

growing at a rate, increasing by a factor of 1000 in 10.5 years, which roughly

corresponds to a doubling every 13 months". Since 2005 we see a slight slowing

of the curve, but it is still reasonably correct since 1983.

86

Picture 21: 8 bytes versus 8,000,000,000 bytes19

Picture 21 illustrates Kryder’s law – it shows the physical size of 8 bytes of core

memory from the 1960s, and a micro-SD flash card containing 8 GB of memory

from the 2010’s – one billion (1,000,000,000) times as much storage in 50 years.

SKIPPED TEXT

87

5.1 Introduction

Compute is an umbrella term for computers located in the datacenter that are

either physical machines or virtual machines. Physical computers contain power

supplies, Central Processing Units (CPUs), a Basic Input/Output System

(BIOS), memory, expansion ports, network connectivity, and – if needed – a

keyboard, mouse, and monitor.

Figure 84: Compute in the infrastructure model

5

COMPUTE

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

88

Originally, the word computer was used for a person who performed manual

calculations (or computations). Beginning in the early 1900s, the word computer

was also used for calculators. The first calculators were mechanical calculators.

Computers as we know them today have two specific characteristics: they

calculate, and they are programmable. Programmable computers became

feasible only after the invention of punch cards, which allowed computers to

process sequences of data.

The British Colossus computer, made during World War II, was the world's first

programmable computer. However, its status was never publicly recognized

because information about it was secret under British secrecy laws.

The first widely recognized computer was the ENIAC (Electronic Numerical

Integrator And Computer). Designed in 1943, the ENIAC was funded by the

U.S. Army in the middle of World War II. It was completed and fully

operational in 1946 (after the war) and remained in operation until 1955.

Although the original purpose of ENIAC was to calculate artillery firing tables

for the U.S. Army's Ballistic Research Laboratory, the machine was first used

to perform calculations for the design of the hydrogen bomb.

Picture 26: ENIAC20

The ENIAC could perform 5,000 operations per second, which was spectacular

at the time. However, it used more than 17,000 vacuum tubes, each with a

limited life span, which made the computer highly unreliable. The ENIAC got

its input using an IBM punched card reader, and punched cards were used for

output as well.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

89

As a result of the invention of the transistor in 1956, in the 1960s computers

started to be built using transistors instead of vacuum tubes. Transistor-based

machines were smaller, faster, cheaper to produce, required less power, and

were much more reliable.

The transistor-based computers were followed in the 1970s by computers based

on integrated circuit (IC) technology. ICs are small chips that contain a set of

transistors providing standardized building blocks like AND gates, OR gates,

counters, adders, and flip-flops. By combining building blocks, CPUs and

memory circuits could be created.

The subsequent creation of microprocessors decreased size and cost of

computers even further, and increased their speed and reliability. In the 1980s

microprocessors were cheap enough to be used in personal computers.

Today’s compute systems include mainframes, midrange systems, and x86

servers. They comprise processors, memory, and interfaces, and they can be

implemented as physical or virtual machines.

5.2 Compute building blocks

5.2.1 Computer housing

Originally, computers were stand-alone complete systems, called pedestal or

tower computers, which were placed on the datacenter floor. Except for

mainframes, most x86 servers and midrange systems are now rack mounted or

placed in enclosures as blade servers.

Rack mounted x86 servers are complete machines, typically 1 to 4 Rack Units

high (for more information on Rack Units, see section 8.2.8). Since they are

complete machines, they need their own power cables, network cables and SAN

cables.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

90

Picture 27: A stack of rack mounted servers21

Blade servers, on the other hand, are servers without their own power supply or

expansion slots. They are placed in blade enclosures, enabling a high server

density in a small form factor. Blade servers are connected to shared power

supplies, by a wiring system called a backplane.

In general, systems based on blade servers are less expensive than rack mounted

servers or pedestal servers because they use the enclosure’s shared components

like power supplies and fans.

Picture 28: Blade enclosure with one blade partially removed22

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

91

A blade enclosure typically hosts from 8 to 16 blade servers and provides:

• Shared redundant power supplies for all blades.

• A shared backplane to connect all blades.

• Redundant network switches to connect the blades’ Ethernet

interfaces providing redundant Ethernet connections to other systems.

• Redundant SAN switches to connect the HBA interfaces on the

blade servers providing dual redundant Fibre channel connections to

other systems.

• A management module to manage the enclosure and the blades in it.

The amount of wiring in a blade server setup is substantially reduced when

compared to traditional server racks, leading to less possible points of failure

and lower initial deployment costs.

A set of blade servers in an enclosure typically uses less electrical power than

individual rack mounted servers due to the lower overhead of the shared

components in the enclosure. From a deployment perspective, blade servers are

also less expensive to install, primarily because the enclosure is a wire-once

component and additional blades can be added with a minimum of time and cost.

One often mentioned benefit of using blade servers is that after some years of

operation, the blades can be replaced by newer and faster blades. In practice,

this is not always the case.

Typically, a blade enclosure is only guaranteed to run one or two generations

of server blades. Newer server blades often don’t fit, or have additional power,

cooling or bandwidth requirements that do not allow them to be used in an

existing enclosure.

For example, a blade enclosure’s power supply and backplane are designed to

provide a maximum number of watts to a blade. If newer blades need more

power, then they cannot be used in that blade enclosure, unless the power

supplies are replaced as well (if possible).

Newer blades typically also allow for higher network and SAN throughput. The

blade enclosure might not allow this, or lowers the network bandwidth to allow

running newer and older blade servers together in one blade enclosure.

Enclosures are often not only used for blade servers, but also for storage

components like disks, controllers, and SAN switches.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

92

5.2.2 Processors

In a computer, the Central Processing Unit (CPU) – or processor – executes a

set of instructions. A CPU is the electronic circuitry that carries out the

instructions of a computer program by performing the basic arithmetic, logical,

control and input/output (I/O) operations specified by the instructions23.

Today’s processors contain billions of transistors and are extremely powerful.

Picture 29: Intel Xeon Processor24

A CPU can perform a fixed number of instructions, such as ADD, SHIFT BITS,

MOVE DATA, and JUMP TO CODE LOCATION, called the instruction set.

Each instruction is represented as a binary code that the instruction decoder of

the CPU is designed to recognize and execute. A program created using CPU

instructions is referred to as machine code. Each instruction is associated with

an English like mnemonic to make it easier for people to remember them. This

set of mnemonics is called the assembly language, which is specific for a

particular CPU architecture.

There is a one-to-one correspondence of assembly language instructions to

machine code instructions. For example, the binary code for the ADD WITH

CARRY machine code instruction may be 10011101 and the corresponding

mnemonic could be ADC.

A programmer writing machine code would write the code using mnemonics for

each instruction. Then, the mnemonics are passed through a program called an

assembler that performs the one-to-one translation of the mnemonics to the

machine instruction codes. The machine instruction codes generated by the

assembler can run directly on the CPU.

The assembler programming language is the lowest level programming

language for computers and very hard for humans to create, understand, and

maintain. Higher level programming languages, such as C#, Java, or Python are

much more human friendly. Programs written in these languages are translated

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

93

to assembly code before they can run on a specific CPU. This process is called

compiling and is done by a high-level language compiler. It allows higher level

languages to be CPU architecture independent.

Actually, machine code is not the lowest level programming language, because

most processors also run microcode. Microcode is a tiny program stored on the

processor chip for each machine instruction. The processor executes multiple

microcode instructions to implement each machine code instruction. Microcode

instructions are simple instructions that generate hardware control signals.

The big advantages are that it simplifies CPU design (replacing hardware with

software), it's easier to debug, and (in modern systems) you can fix many

hardware bugs in the field with microcode patches.25.

A CPU needs a high frequency clock to operate, generating so-called clock ticks

or clock cycles. Each machine code instruction takes one or more clock ticks to

execute. The speed at which the CPU operates is defined in GHz (billions of

clock ticks per second). Because of these high clock speeds CPUs are able to

execute instructions very fast. An ADD (mnemonic for addition) instruction, for

example, typically costs 1 tick to compute. This means a single core of a 2.4

GHz CPU can perform 2.4 billion additions in 1 second!

Each CPU is designed to handle data in chunks, called words, with a specific

size. The word size is reflected in many aspects of a CPU's structure and

operation; the majority of the internal memory registers in the processor are the

size of one word and the largest piece of data that can be transferred to and from

the working memory in a single operation is also a word. By using large word

sizes larger chunks of data can be read and written to memory in one clock tick.

While the first CPUs had a word size of 4 bits, 8-bit CPUs quickly became much

more popular, where numerical values between 0 and 255 could be stored in a

single internal memory register.

The first single chip 16-bit microprocessor was the Texas Instruments TMS

9900, but the 16-bit Intel 8086 quickly became more popular. It was the first

member of the large x86 microprocessor family, which powers most computers

today.

Today’s 64-bit CPUs have registers that can hold a single value which can have

264 different values. For example, an integer number between 0 and 264

represents a virtual memory address. Therefore, a 64-bit CPU can address

17,179,869,184 TB of memory, as opposed to 32-bit CPUs, which can address

4 GB memory.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

94

5.2.2.1 Intel x86 processors

Following the huge success of IBM’s PC architecture in 1981, Intel CPUs

became the de-facto standard for many computer architectures. The original PC

used a 4.77 MHz 16-bit 8088 CPU. The follow-up model IBM PC/AT used the

more advanced 16-bit 80286.

In 1985, Intel produced the 32-bit 80386 and later the 80486 processors. Since

these names all ended with the number 86, the generic architecture was referred

to as x86. Later, Intel processors got more marketed names like Pentium (mainly

because Intel could not get the numbers patented as a name), but the architecture

was still based on the original x86 design. This allowed for backwards

compatibility of software; software written for the 8088 could still run on later

CPU models without a change.

The latest Intel x86 model is the 24-core i9-13900K Processor, running on 3

GHz26.

SKIPPED TEXT

5.3 Compute availability

High availability in servers can be reached by using hot swappable components,

parity and ECC memory, and lockstepping.

5.3.1 Hot swappable components

Hot swappable components are server components like memory, CPUs,

interface cards, and power supplies that can be installed, replaced, or upgraded

while the server is running.

To prevent short circuits or electrical noise that could lead to malfunction of

electronic components, the server must have dedicated circuitry to disconnect

the hot swappable component. Alternatively, the server's system board may also

have special connectors that physically disconnect power to a component while

the component is removed.

The virtualization and operating systems using the server hardware must be

aware that components can be swapped on the fly. For instance, the operating

system must be able to recognize that memory is added while the server operates

and must allow the use of this extra memory without the need for a reboot.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

95

5.3.2 Parity and ECC memory

To detect memory failures, parity bits can be used as the simplest form of error

detecting code. A parity bit is a bit that is added to a byte to ensure that the

number of bits with the value ‘1’ in a byte is even or odd.

For instance, with even parity, when a byte of memory contains 1011 0110, the

number of ones is five. In this case the parity bit stores a 1, making the number

of bits even (six). When the memory contains 1001 0110 the number of ones is

four. In the parity bit a 0 is stored, making the number of bits even again (still

four).

DATA PARITY

1001 0110 0

1011 0110 1

When for some reason one of the data bits or the parity bit itself is "flipped", it

can be detected:

DATA PARITY

0001 0110 0 -> ERROR: parity bit should have been 1!

Parity bits enable the detection of data errors but cannot correct the error, as it

is unknown which bit has flipped.

In contrast, ECC memory not only detects errors, but is also able to correct them.

ECC stands for "Error Correction Codes". ECC Memory chips use Hamming

Code or Triple Modular Redundancy (TMR) as the method of error detection

and correction. Hamming code can correct single bit errors occurring in data.

Multi-bit errors in the same memory location are extremely rare and don’t pose

much of a threat to memory systems. TMR memory, however, is able to repair

two failing bits.

The BIOS of some computers, and operating systems such as Linux, can count

the number of memory errors detected and corrected, to report failing memory

modules before the problem becomes catastrophic.

Memory errors are proportional to the amount of RAM in a computer as well as

the duration of operation. Since servers typically contain many GBs of RAM

and are in operation 24 hours a day, the likelihood of memory errors is relatively

high and hence they require ECC memory.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

96

5.3.3 Virtualization availability

All virtualization products provide failover clustering. Since the virtualization

layer has no knowledge of the applications running on the virtual machine’s

operating system, failover clustering on the virtualization level can only protect

against two situations:

• A physical hardware failure.

• An operating system crash in a virtual machine.

When a physical machine fails, the virtual machines running on that physical

machine can be configured to restart automatically on other physical machines.

And when a virtual machine crashes, it can be restarted automatically on the

same physical machine.

Some virtualization products provide monitoring of the operating systems from

within the virtual machines’ operating system. For instance, VMware provides

the VMware-tools application running inside the operating system of the virtual

machine. It monitors, among other things, if the operating system is still

working. When the operating system crashes, the VMware tools are not

reachable anymore and VMware will restart the virtual machine automatically.

Since failover clustering on the virtualization layer cannot protect against

application failures (like a crashed application process or service), these should

be handled by the operating system layer. See the chapter 12 on operating

systems for more details.

Both VMware (vSphere with HA/FT) and Citrix (XenServer with Marathon

everRun) also provide lockstep technology to keep two virtual machines in sync,

effectively providing redundant operating systems. This technology, however,

has some technical limitations and uses quite a bit of network bandwidth.

5.3.3.1 Admission

To cope with the effects of a failure of a physical machine, a spare physical

machine is needed. For this setup to work, all hypervisors are placed in a

virtualization cluster, so they are aware of each other. The hypervisors on the

physical machines check the availability of the other hypervisors in the cluster.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

97

Figure 101: Using a spare physical machine

In Figure 101, one physical machine is running as a spare to take over the load

of any failing physical machine. Under normal conditions the spare server is not

doing any work.

Figure 102: Failing physical machine

When one physical machine fails (Figure 102), the virtual machines running on

it are automatically restarted on the spare physical machine.

An alternative is to have all physical machines running at lower capacity. For

instance, when 5 machines are in a virtualization cluster, and each machine

could host ten virtual machines, the total load of all servers should be 4 × 10 =

40 virtual machines. Instead of having one spare server running, the workload

can also be spread over all machines, each hosting
40

5
= 8 virtual machines.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

98

Figure 103: All machines used

This way all resources are used as much as possible since the hypervisor will

provide extra resources like RAM and CPU to the virtual machines

automatically, even though it is still possible to handle a failure of a physical

machine. In that case the four remaining physical machines still have the

capacity to run 8 extra virtual machines and the virtual machines that ran on the

failed physical machine can automatically be restarted on the other physical

machines (Figure 104).

Figure 104: Failing machine when all machines were used

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

99

5.4 Compute performance

The performance of computers is dependent on the architecture of the server

(which is described in earlier sections), the speed of the memory and CPU, and

the bus speed.

5.4.1 Moore's law

Today, all computers use microprocessors as their Central Processing Unit

(CPU). Before the invention of microprocessors, a single CPU was built using

one or more circuit boards, containing large numbers of Integrated Circuits

(ICs). Each IC contained from tens to a few hundred transistors.

In 1971, Intel released the world's first universal microprocessor, the 4004. A

microprocessor is nothing more than a very complex IC, combining the

functions of all the individual ICs and the circuitry needed to create a CPU,

effectively creating a processor on a chip.

Picture 36: Intel 4004 microprocessor27

The 4004 chip itself was 3 mm wide by 4 mm long and consisted of 2,300

transistors. The chip was mounted in a DIP package with 16 connection pins

(the DIP package was much larger that the chip itself of course). Coupled with

one of Intel's other products, the RAM chip, the microprocessor allowed

computers to be much smaller and faster than previous ones. The 4004 was

capable of performing 60,000 instructions per second, which was about as much

as the ENIAC computer that filled a complete room and weighed several tons.

Since the introduction of the first CPU in 1971, the power of CPUs has increased

exponentially. This makes today’s computers much more powerful than we

could possibly have imagined forty years ago.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

100

Moore's law states that the number of transistors that can be placed

inexpensively on an integrated circuit doubles approximately every two years.

This trend has continued for more than half a century now. The law is named

after Intel’s co-founder Gordon E. Moore, who described the trend in his 1965

paper "Cramming more components onto integrated circuits”28, when he

worked at Fairchild.

Over the years, the number of transistors on a CPU raised from 2,300 on the

first CPU (the 4004 in 1971) to 100,000,000,000 (100 billion) on an Intel Alder

Lake hybrid processor in 2022. This is an 43 million-fold increase!

Figure 105: Moore's law

Figure 105 clearly shows the trend. Please note that the vertical scale is

logarithmic instead of linear, showing a 10-fold increase of the number of

transistors in each step.

Note that Moore's law only speaks of the number of transistors; not the

performance of the CPU. The performance of a CPU is dependent on a number

of variables, like the clock speed, the use of caches and pipelines, and the width

of the data bus. When we look at the performance gain, we see a doubling of

CPU performance every 18 months; even faster than what Moore's law states.

Obviously, Moore’s law cannot continue forever, as there are physical limits to

the number of transistors a single chip can hold. Today, the connections used

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

101

inside a high-end CPU have a physical width of 5 nm (nanometer). This is

extremely small – the size of 24 atoms (the diameter of an atom is of the order

of 0.21 nm29)!

When designing an infrastructure, it sometimes makes sense to take Moore's law

into account by not purchasing too much spare capacity in advance. By

purchasing and implementing new servers "just in time", the purchased server

will have twice the processing capacity of a server you could have purchased 18

months earlier, for the same price. Therefore, to get the full benefits of Moore's

law, the infrastructure (management) must be designed to handle just in time

upgrades.

SKIPPED TEXT

5.5 Popular operating systems

5.5.1 z/OS

One of the first operating systems was IBM's OS/360, introduced in 1964. It was

a batch processing system, created for the IBM system/360 mainframe

computer. Later, OS/360 MFT (Multitasking with a Fixed number of Tasks) and

OS/360 MVT (Multitasking with a Variable number of Tasks) provided

multitasking to mainframes. The successor of OS/360 was OS/370, which

introduced the concept of virtual memory in 1972 (see section 11.2.5.4 for more

information on virtual memory).

MVS, released in 1974, was the primary operating system on the System/370

and System/390. The 64-bit version of MVS for the zSeries mainframes was

named z/OS and was introduced in 2000. IBM’s z/OS is now the most used

mainframe operating system. It runs on IBM mainframes only.

Extreme backward compatibility is one of z/OS's main design philosophies:

programs written for MVS in 1974 can still run on today's z/OS without

modification.

Reading and writing a tremendous amount of data and performing relatively

simple calculations on it (for example, "read in these 400,000 records of data,

do 6 calculations on each, and then output 400,000 separate reports") is a typical

use of mainframes running z/OS.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

102

While z/OS is still most used for this type of batch processing, it can be used

interactively as well. A system running z/OS can support thousands of

interactive users simultaneously.

z/OS doesn't always have the default settings that we take for granted on other

systems. Most of the settings are to be set by systems managers. Many settings

and details are site-specific, so a new user on a particular z/OS system needs to

find his way around the system first in order to be able to work with it.

5.5.2 IBM i (OS/400)

IBM i is an operating system only used on IBM's Power Systems (previously

called iSeries and AS/400 systems) midrange systems.

In 1969, eight years after DEC introduced the PDP-1, IBM introduced its first

minicomputer: The System/3. Because the system was relatively expensive and

was less advanced than the DEC systems, the System/3 was never very popular.

The IBM System/32, introduced in 1975, and its successor, the System/34, were

also not very popular, but the System/38 (in 1978) and the System/36 (in 1983)

were.

Users found the System/36 and its operating system easy to use. IBM kept this

in mind when designing the OS/400 operating system for the new series of

AS/400 midrange systems. Over the years, the name of the operating system has

changed from OS/400 to i5/OS to IBM i30.

One of the biggest advantages of IBM i is its completeness. Communications,

transaction processing, and system security were implemented as intrinsic parts

of the operating system from the start. IBM i also has a relational database

manager built in as an integral part of the operating system. Features for the

implementation and maintenance of data security are implemented natively as

part of the operating system.

The latest version is known officially as IBM i 7.531.

5.5.3 UNIX

UNIX is a multitasking, multi-user operating system, originally created by

AT&T. In 1969, at Bell Labs, Ken Thompson, Dennis Ritchie, and others got

hold of a little-used PDP-7 system. They used the machine to create a new time-

sharing multi-user multitasking operating system, based on earlier work on a

system called MULTICS.

The first UNIX version was written entirely in PDP assembler, which made it

highly dependent on the hardware. In 1973, UNIX was rewritten in the new C

programming language (C was also created by Dennis Ritchie, together with

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

103

Brian Kernighan, which makes UNIX and C are very much related to each

other). This made UNIX portable to multiple types of computer hardware.

In 1975, version 6 was the first to be widely available outside of Bell Labs (later

AT&T). In 1982, UNIX was licensed to a number of computer manufacturers,

including Sun Microsystems and Hewlett-Packard. Most of these vendors

started to market their own UNIX versions based on the original UNIX source

code. They adapted the code to meet their own hardware and software

requirements.

In early 1993, AT&T sold its UNIX System Laboratories to Novell. In 1994

Novell transferred the rights to the UNIX trademark and the specification to The

Open Group. Subsequently, it sold the source code and the product

implementation (called UNIXWARE) to SCO.

Because UNIX is written almost entirely in the C programming language, and

because the source code is published, it has been ported to a wide variety of

machine architectures.

Originally, AT&T registered "UNIX" as a trademark, so although anyone could

create their own version of UNIX and market it, they were not allowed to call it

UNIX. As a result, vendors came up with different names for their UNIX

flavors:

Vendor UNIX flavor

IBM AIX

Oracle/Sun Solaris

HP HP-UX

Apple
Mac OS X (built on FreeBSD,

discussed in the next section)

Table 21: UNIX flavors

These versions are 90% the same, but have some minor differences, like the

wording of error messages, the order of commands used to start up the machine,

or the location of certain files.

Each of these flavors needs specific hardware. HP-UX only runs on HP Integrity

systems, and these systems cannot run for example AIX.

Applications running on a particular flavor of UNIX cannot run on another

flavor without (at least) recompiling. This means that software vendors must

provide separate versions of their applications for each flavor of UNIX.

UNIX popularized the hierarchical file system with nested subdirectories, a

feature now implemented in most other operating systems as well. All files and

directories appear under the so-called root directory "/", even if they are stored

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

104

on different physical disks. UNIX has no concept of drive letters; drives are

mounted on a branch in the directory tree, providing disk space for that

particular branch.

The UNIX philosophy is to use a large set of small tools that do only one thing,

and do it very well. To perform complicated tasks, commands can be combined

using a system called pipes. Pipes feed the output of one command to the input

of another command, without storing the intermediate result. For instance, the

UNIX command:

ls | sort

prints a sorted list of files on the screen. The pipe sign “|” ensures that the output

of the “ls” command is routed (as input) to the “sort” command. Since after the

sort command there is no further pipe specified the final output is send to the

standard output system: the screen.

Of course, this is a very simple example. In practice these chains of piped

commands can get very long and complex.

In UNIX, everything is treated as a file, even printers, modems, the keyboard

and the screen. This allows piped commands, for instance, to use typed input

from the keyboard, process them using some application, and have the output

send automatically to a printer.

5.5.4 Linux

Linux is a UNIX-like operating system, but is not derived from the UNIX source

code. Instead, it was developed independently by a group of developers in an

informal alliance on the internet as a free operating system for the x86 platform.

In 1987, Andrew Tanenbaum, who was a professor of computer science at the

Vrije Universiteit, Amsterdam in the Netherlands, wrote a clone of UNIX, called

MINIX, for the IBM PC. He wrote MINIX especially for his students to teach

them how an operating system worked. Tanenbaum wrote a book32 that not only

listed the 12,000 lines of MINIX source code, but also described each important

part of the source code in detail, including the theory about why it was

programmed the way it was.

Linus Torvalds, at the time a student at the University of Helsinki, studied

MINIX in an operating system course and bought a PC to try it. In 1991,

Torvalds wanted to explore the multitasking possibilities of the new Intel 80386

CPU in his PC and decided to create a small multitasking, multi-user operating

system himself with the help of the internet community. On USENET, he asked

developers on the internet to help him with the development33. Because of the

open source nature of Linux many developers contributed with kernel patches,

device drivers, and additions like multilingual keyboards, floppy disk drivers,

support for video card devices, and much more.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

105

It is important to understand that Linux is actually only an operating system

kernel. Today’s Linux distributions consist of the Linux kernel and its drivers,

and the GNU project’s applications, libraries, compilers, and tools.

The GNU project (GNU is a recursive acronym for “GNU's Not UNIX!”) was

launched in 1984 by Richard Stallman, to develop a free UNIX-like operating

system. By 1990, the GNU project had recreated all the major components of

the UNIX-like system except one – the kernel. Combining Linux with the

almost-complete GNU system resulted in a complete operating system: the

GNU/Linux system.

Linux and the GNU tools are licensed under the GNU General Public License,

ensuring that the all source code will be free for all to copy, study, and to change.

Soon, commercial vendors showed interest. Linux itself was, and still is, free.

What the vendors did was compiling the source code, adding some tools and

configurations of their own, and releasing it in a distributable format. Red Hat,

SuSe, Ubuntu and Debian are some of the best-known Linux distributions.

Extended with Graphical User Interfaces (like KDE or GNOME), user-friendly

Linux distributions became very popular.

Today Linux is a very mature operating system. Companies like Red Hat and

SUSE sell professional Linux distributions including support contracts.

Linux is used everywhere – in servers, workstations, mobile devices, all Android

smartphones, and appliances like set-top boxes, firewalls and NAS devices.

Almost all of the internet services run on Linux. Ninety-five per cent of the

supercomputers listed in the top 500 list of the fastest computers in the world34

are running Linux.

While Linux typically runs on x86 servers or ARM based devices, some Linux

distributions can be used on IBM mainframes, running in virtual machines.

Since Linux’s design is derived from UNIX’s design, Linux commands and

scripts are to a large degree similar to those of UNIX. Linux not only uses the

same (well-known) commands, but also the same file structure, scripting

language, pipes, etc. This allows experienced UNIX systems managers to use

Linux without the need for much extra knowledge. Porting systems from UNIX

to Linux is therefore generally much easier than porting them to for instance

Windows.

5.5.4.1 Linux support

Linux is created as an open source project. This means that the source code of

Linux is published and freely available. While this allows users to change the

source code to their needs, this is hardly ever done, due to the complexity of the

Linux source code and the limited benefits of changing the code.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

106

Most organizations demand professional support for their software. And

although Linux can be downloaded from the internet for free, professional

support is certainly not free. Most Linux distribution vendors, like Red Hat and

SUSE, and some independent vendors, offer support contracts for Linux.

SKIPPED TEXT

107

6.1 Introduction

Humans interact with applications using end user devices. Typical end user

devices are desktop PCs, laptops, virtual desktops, mobile devices like phones

and tablets, and printers.

Figure 120: End user devices in the infrastructure model

6

END USER DEVICES

108

The first end user devices were teletypes. Teletypes were electromechanical

typewriters that provided a user interface to early computers, sending typed data

to the computer and printing the response.

Picture 37: Teletype35

Later, electronic terminals replaced the teletypes. Terminals provided a monitor

screen instead of printed paper, allowing full screen editing and instant output.

Terminals were “dumb”, as they did not have their own processing power. They

relayed typed-in commands to the mainframe or midrange computer and the

computer sent data back to the terminal to be displayed. Terminals were used

for decades to interact with mainframe and midrange computers.

In 1981, IBM introduced the Personal Computer (PC). The IBM PC became the

de facto end user device in many office environments, allowing office workers

to have full control over their own computer for the first time.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

109

Picture 38: The original IBM PC-XT36

IBM developed the PC in about a year. To achieve this, they decided to build

the machine with "off-the-shelf" parts from a variety of manufacturers. They

also decided on an open architecture, enabling other manufacturers to produce

and sell peripheral components and compatible software without having to

purchase licenses. IBM even sold an IBM PC Technical Reference Manual

which included complete circuit diagrams and a listing of the ROM BIOS source

code.

The result was that many parties copied the PC – the so-called PC clones. These

clones (or IBM-compatible PCs) used the same architecture, used the same

chipset as the IBM PC, and used reversed-engineered BIOS software (because

even though the source code was published, it was still copyrighted). This

allowed clones to run unmodified IBM software. One of the first and most

successful companies building clones was Compaq, which would later become

part of HPE.

All of the IBM PC software was developed by third parties. The most influential

one being Microsoft that provided the DOS operating system and office tools

like Word and Excel.

IBM was a major computer manufacturer long before the introduction of the PC.

Apple, on the other hand, was founded by two hobbyists. In 1984, Apple

introduced the Apple Macintosh. It was the first commercially successful

personal computer to feature a mouse and a GUI rather than a command line

interface. It was designed to be used by consumers, and not as an office tool.

110

Both the Mac and the PC evolved over time to become much faster. Color video

screens and sound boards became the norm, and laptops became the most used

form factor.

6.2 End user device building
blocks

End user devices can be categorized as:

• Desktop PCs

• Laptops

• Virtual desktops

• Mobile devices

• Printers

All of these categories are discussed in the following sections.

6.2.1 Desktop PCs and laptops

The most used end user devices today are desktop and laptop computers based

on Intel’s x86 architecture, mostly referred to as PCs. While Apple iMacs also

run on the x86 platform, according to Statcounter37, Microsoft Windows is the

most used operating system for desktop and laptops at 76%, followed by Apple's

macOS at 16%, and Linux-based operating systems at 5%.

Over the years, PCs have become very powerful. This enables them to run

complex software and to store relatively large amounts of data. But because of

the sheer complexity of the PC itself, the very advanced operating systems, the

amount of locally installed software, and the performance, availability, and

security issues related to all of these aspects, many organizations are searching

for more cost-effective and simple solutions.

But people are attached to their PCs. The term personal computer is still correct

– most users feel their PC is their personal tool that systems managers should

not tamper with. This is one of the main reasons why the adoption of alternatives

like thin clients (see 13.3.4) has never been as successful as it could have been.

Nowadays, most laptops are as powerful as desktop PCs. And because users can

take them home or use them on the road, they are even more "personal" than

desktops. Laptops, however, have some disadvantages compared to desktop

PCs, like:

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

111

• Laptops frequently get lost or stolen. On average, 10% of the laptops

are lost or stolen during their life cycle38. These laptops must be

replaced, the user cannot work in the meantime, and data on the

laptop that was not backed-up is lost.

• Laptops break more easily than desktops, because they are more

vulnerable to drops, bumps, coffee spills, etc.

• Since most laptops are taken home every night, the chance of illegal

or malicious software being installed on the laptop is much higher

than on a desktop PC in the office.

When used in the office, laptops are often connected to a docking station (also

known as a port replicator) using a USB-C cable. The docking station provides

a number of external ports for connecting a keyboard, mouse, camera, speakers,

and microphone, as well as one or more displays. The USB-C cable can also

charge the laptop’s battery when the laptop is connected to the docking station.

6.2.2 Mobile devices

Mobile devices in the context of this book are devices that connect to the IT

infrastructure using wireless public or public Wi-Fi networks. Typical mobile

devices are smartphones, tablets, and smart watches.

While the computing power of some mobile devices is getting comparable to

desktop and laptop computers, mobile devices have some specific properties

that infrastructure architects must be aware of.

Mobile devices typically connect to the IT infrastructure using public networks

based on for example LTE technology (as explained in 9.3.3.6). The bandwidth

of these connections is lower than that of Wi-Fi and wired Ethernet connections.

Also, connection speed can heavily fluctuate as the users move around, and it

sometimes can fluctuate quite fast when the mobile device is used inside a car

or train. The reliability of the connections is therefore worse than that of Wi-Fi

or wired Ethernet connections. When moving around, connections sometimes

drop for short periods of time or drop altogether. Signal noise can force

resending large numbers of network packets. Apps running on mobile devices

are specially designed to handle these characteristics.

Another limitation of mobile devices is the small form factor forcing limited

keyboard and screen sizes. Applications’ user interfaces must be re-engineered

to handle these smaller sizes.

112

6.2.3 Bring Your Own Device (BYOD)

In many cases, organizations use standard PCs or laptops with a limited set of

business software. In contrast, users at home have access to fast, sexy laptops of

the brand they like, tablets and smart phones that allow them to run thousands

of highly attractive apps and they have fast broadband internet connections at

home that are often faster than the shared network in the office.

To attract new employers and because people will take their personal device to

the office anyway, most organizations are now confronted with a concept called

Bring Your Own Device (BYOD).

BYOD allows people to bring personally owned – typically mobile – devices to

the office, to use them to access the organization’s applications and data, as well

as their personal applications and data.

The BYOD concept creates a conflict of interests. To optimize stability of the

organization’s infrastructure and security, systems managers need to fully

control the end user device, while the owners of the devices want full freedom.

And since the user paid for the device (they brought their own device), it will

not be acceptable for users to have systems managers erase the device (including

all family photos) in case of an incident, or to have personal data visible to the

systems managers.

Virtualization techniques can be used to create isolated environments on these

devices. Some solutions implement a hypervisor on the device that runs two

virtual machines:

• One virtual machine that has access to the organization's data and

applications and is fully managed by the organization's systems

managers. This virtual machine is managed using Mobile Device

Management (MDM) software that can monitor, maintain and secure

the virtual machine. If necessary, the organization's managed virtual

machine can be wiped remotely to remove all sensitive data.

• One virtual machine that is owned and managed by the end user. This

machine runs whatever applications the user wants (browsers, social

network clients, games, streaming music players, video players, etc.).

Both virtual machines use the same underlying hardware like network

connectivity, touch screen, GPS, compass, and the sound system. But since both

virtual machines are run on top of a hypervisor, no sensitive data will be

available from the user’s managed virtual machine.

SKIPPED TEXT

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

113

6.2.4 End user authorizations and
awareness

End users should not be able to remove important software or alter system files

or log files on their devices. Therefore, they should not have (access to) the

administrator password of their device. When users need to install software

(which is a frequent requirement in practice, especially in developer

environments), they could be given the right to do so, without giving them the

administrator password of their device

BIOS passwords should be used on laptops and desktops to further increase

security. BIOS settings should be applied to prevent booting from USB memory

devices.

But the security issue with end user devices is not so much a matter of the device

as it is a matter of the end user. Users need to be aware of common security

guidelines including the possibility of social engineering, using strong

passwords and knowing how to handle sensitive data.

115

PART IV
 –

INFRASTRUCTURE
MANAGEMENT

We live in a society exquisitely dependent on science and technology, in

which hardly anyone knows anything about science and technology.

Carl Sagan, American astronomer, 1990

117

7.1 Introduction

Where the chapters in Part III were about technological infrastructure building

blocks, this part IV is about the systems management processes. It explains the

various ways infrastructure can be deployed, the steps to deploy an

infrastructure, how automation can replace manual configuration, and how to

manage the infrastructure and deploy applications. Finally, it describes the steps

to decommission an infrastructure at the end of its life cycle.

7

INFRASTRUCTURE
DEPLOYMENT

OPTIONS

118

Figure 126: Infrastructure management

This chapter discusses how to select the best deployment option for an

infrastructure.

7.2 Hosting options

Infrastructure can be hosted on-premises, in a colocation, deployed in a public

cloud, or the full infrastructure management can be outsourced.

With on-premises hosting, infrastructure components run on the premises of

the organization using the infrastructure. This can be in the datacenter of an

existing building, or in a dedicated, specially designed datacenter building.

As the datacenter is implemented in an organization owned building, the

building must have enough space, an uninterruptable power supply (UPS),

options to install sufficient cooling, fire prevention and detection, external

redundant network capabilities with enough bandwidth, and sufficient floor

loading capacity (see section 8.2.4.1 for more details on datacenter

requirements).

Two major drawbacks of on-premises hosting are:

• Typically, on-premises datacenters don’t scale well, especially if they

are embedded in existing (office) buildings.

• As the organization owns and runs their own datacenter, it must have

enough knowledge and staff available to manage the datacenter.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

119

In contrast, a colocation is a third party dedicated datacenter where racks, floor

space, and network bandwidth can be rented. A colocation provides power,

cooling, and physical security, and hosts and connects customer owned

infrastructure components. Colocation racks are empty – all infrastructure

components must be provided and managed by the organization renting the

colocation racks.

Organizations can also choose to use public cloud computing. Depending on

the deployment model chosen, the organization delegates more or less systems

management. With IaaS, the organization has to do most of the management

itself, while with SaaS it has to manage the least.

An organization can also decide to outsource their entire infrastructure. Full

infrastructure outsourcing is a subcontracting service in which some third-party

purchases, deploys, hosts, and manages the infrastructure, and performs its

lifecycle management. The outsourcing is managed using Service Level

Agreements and typically has a very rigid change management process.

Outsourcing frees the organization from investing in hardware – only leaving

operational cost. The outsourcing organization must have a demand

organization and process in place in order to manage the outsourcing party, but

it can be freed from internal infrastructure systems managers.

7.3 (Hyper) Converged

Infrastructure

In a traditional infrastructure deployment, compute, storage and networking are

deployed and managed independently, often based on components from

multiple vendors. In a converged infrastructure, the compute, storage, and

network components are designed, assembled, and delivered by one vendor and

managed as one system, typically deployed in one or more racks.

A converged infrastructure minimizes compatibility issues between servers,

storage systems and network devices while reducing costs for cabling, cooling,

power and floor space. Scaling up a converged infrastructure requires the

deployment of additional racks.

Where in a converged infrastructure the infrastructure is deployed as individual

components in a rack, a hyperconverged infrastructure brings together the same

components within a single server node.

A hyperconverged infrastructure (HCI) comprises a large number of identical

physical servers from one vendor with direct attached storage in the server and

special software that manages all servers, storage, and networks as one cluster

running virtual machines. The technology is easy to expand on-demand, by

adding nodes to the hyperconverged cluster.

120

Hyperconverged systems are an ideal candidate for deploying VDI

environments (see section 13.3.3), because storage is close to compute (as it is

in the same box) and the solution scales well with the rise in the number of users.

A big advantage of converged and hyperconverged infrastructures is managing

only one vendor, that provides hardware, firmware, and software. Vendors of

hyperconverged infrastructures make all updates for compute, storage and

networking available in one service pack and deploying these patches is

typically much easier than deploying upgrades in all individual components in

a traditional infrastructure deployment.

Drawbacks of converged and hyperconverged infrastructures are:

• Vendor lock-in – the solution is only beneficial if all infrastructure is

from the same vendor.

• Scaling can only be done in fixed building blocks – if more storage

is needed, compute must also be purchased. This can have a side

effect: since some software licenses are based on the number of used

CPUs or CPU cores, adding storage also means adding CPUs and

hence leads to extra license costs.

7.4 Private cloud

A private cloud, also known as a software-defined datacenter (SDDC), is an

architecture in which all infrastructure resources – compute, storage and

networking – are virtualized, and can be configured using software APIs.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

121

Figure 127: Private cloud

As shown in Figure 127, a private cloud is an enterprise infrastructure, where

all resources are virtualized and managed by automation and orchestration

software. A private cloud is not a cloud in the pure sense of the word – it has

limited scaling and there is no pay per use – but its software is comparable to

IaaS services of public clouds.

A private cloud is characterized by automation, orchestration, and abstraction

of resources into software and code. By nature, code is more reliable than

humans, which means that compared to a traditional datacenter, a private cloud

is more secure and more agile. Changes are managed by an automated

workflow, where an orchestrated change can lead to a number of automated

changes in various resources.

A private cloud enables developers, DevOps teams and systems managers to

create and deploy new infrastructures using either a manual self-service portal,

or a combination of a build server and APIs. It allows the user to request the

122

desired infrastructure components, their sizing to meet performance demands,

and their required availability; and automatically configures the private cloud

components to deliver a secured infrastructure implementation. The private

cloud software also provides tools for costing, logging, reporting, scaling (up

and down), and decommissioning of the infrastructure resources.

Examples of private cloud automation and orchestration products are

OpenStack’s Horizon, IBM Cloud Orchestrator, and VMware vRealize.

A private cloud is not the solution for all problems – there are many applications

that need a much more custom-designed infrastructure than the standard private

cloud building blocks can deliver. Examples of these applications are SAP

HANA, high performance databases, OLTP, high secure bank or stock trade

transaction systems, and SCADA systems.

7.5 Public cloud

An organization may choose to build their entire infrastructure in – or migrate

to – a public cloud provider. Especially in the case of a green field situation,

such as a startup company, hosting the entire virtual infrastructure in the public

cloud could be a viable option. Usually one of the major cloud providers is

chosen, such as Amazon's AWS, Microsoft Azure or Google’s GCP.

Another good reason to move to the public cloud is the use of innovative

technology. Cloud providers can innovate much faster than most other

organizations due to their scale and financial buffers. Customers can easily take

advantage of these innovations, which not only become available quickly, but

are also immediately production-ready.

7.6 Hybrid cloud

Most organizations do not choose to migrate all of their existing infrastructure

to the public cloud at once. Over the years, many organizations have built a very

complex landscape of infrastructure components, applications, and connections

that cannot be moved overnight. In many cases, it is not cost effective to migrate

an entire datacenter as-is via a lift and shift migration, which typically results in

high cloud operating costs. In addition, the organization receives little value

from the cloud migration. As a result, a phased approach is often taken, with

some of the infrastructure remaining on-premises and some migrated to the

public cloud. Because the on-premises components need to communicate with

the components in the public cloud, a connection must be established between

the on-premises datacenter and the public cloud provider. This is called a hybrid

cloud.

Error! Use the Home tab to apply Kop 1 to the text that you want to

appear here.

123

A hybrid cloud often remains in place for several years, because it can take a

long time to completely phase out the on-premises environment for a variety of

reasons.

Some drawbacks of a hybrid cloud are that knowledge of both the existing on-

premises environment and the new cloud environment must be present and

maintained, and there is a combination of pay-as-you-go costs in the cloud and

investment and licensing costs in the on-premises environment.

125

8.1 Introduction

Until a few years ago, most servers, storage, and networks were configured

manually. Systems managers installed hardware in racks, installed operating

systems from installation media, added libraries and applications, patched the

system with the latest software versions, and configured the software for that

specific installation. However, this approach is slow, error-prone, and not easily

repeatable. It introduces variations in server configurations that should be the

same and makes the infrastructure very difficult to maintain.

An alternative is to automatically create and configure servers, storage, and

networking, a concept known as infrastructure as code.

8.2 Infrastructure as code

Infrastructure as Code (IaC) is a way to deploy and manage infrastructure

components based on a programming language, similar to how software

developers write code to create applications.

IaC tools allow developers to define the desired state of their infrastructure in a

programming language, which is then used to provision and manage

infrastructure resources. This approach ensures that the infrastructure is

consistent and can be deployed in a repeatable manner.

With IaC, deployment speeds are increased and greater consistency and

reliability are achieved with fewer errors.

8

AUTOMATION

126

By treating infrastructure like code, organizations can automate the

management of their infrastructure, enabling them to respond more quickly to

changing business needs and reduce the risk of human error.

8.2.1 Declarative vs imperative
languages

Computer code can either be declarative or imperative in nature.

• Imperative programming describes how to achieve a certain result by

defining a sequence of steps. The focus is on how the program should

accomplish a task.

• Declarative programming describes what the program should

accomplish without defining the exact steps to get it done.

Declarative programming languages focus on the end result, rather

than how to achieve it.

Unlike most ordinary programming languages, such as C, Java and Python, most

IaC languages are declarative. The IaC code describes what the infrastructure

should look like, and executing the code deploys the infrastructure as described.

This makes the code an important part of infrastructure documentation. It allows

all systems managers to read how the entire infrastructure is put together.

If a change is made to the code, for example when a new VM is inserted into

the code base, the IaC tool will check the state of the running infrastructure and

compare it to the desired state as described in the code. In this example, it will

determine that an additional VM is needed and will deploy only that new VM.

8.2.2 Versioning

To keep track of changes to software code over time, developers use version

control systems. In these systems, files of software code are stored in

repositories. A repository automatically creates a new version of the code when

code is pushed to the repository. All previous versions remain available,

enabling the retrieval of a previous version of a file if necessary. The repository

is generally used by multiple developers, with each developer writing or

maintaining part of the code.

IaC also benefits from version control systems. Git, GitHub and GitLab are the

most widely used tools for version control.

• Git is a distributed version control system with a standalone

command line interface tool, that provides features like branching,

merging, and committing changes to code.

127

• GitHub is a web-based platform for hosting Git repositories. It

provides a graphical interface for creating, managing, and sharing Git

repositories.

• GitLab provides features similar to GitHub, but can be self-hosted.

8.2.3 Commonly used IaC languages

There are several commonly used IaC languages. Below are some of the most

popular ones:

Terraform is a popular open-source tool and Domain-Specific Language (DSL)

for building, changing, and versioning infrastructure. Terraform is cloud

agnostic, which means that it has a generic syntax can be used to configure a

wide range of cloud providers and infrastructure platforms, including AWS,

Azure, GCP, Kubernetes, Red Hat OpenShift, databases like MySQL and

PostgreSQL, firewalls, and more. But it must be noted that each platform needs

its own configuration details – in Terraform, configuring an EC2 VM in AWS

is done differently than configuring a VM in Azure.

SKIPPED TEXT

129

IS 2020.3 Curriculum

reference matrix

The IS 2020 is a Competency Model for Undergraduate Programs in

Information Systems from the Association for Computing Machinery (ACM).

It contains several competence areas, including IT Infrastructure (competence

area 3). IS 2020.3 based courses39 offer an introduction to IT infrastructure

topics for students majoring in Information Systems. It provides the students the

knowledge and skills that they need for communicating effectively with

professionals whose special focus is on hardware and systems software

technology and for designing organizational processes and software solutions

that require in-depth understanding of the IT infrastructure capabilities and

limitations.

This book covers all topics that are part of the IS 2020.3 curriculum. The

matrices in this appendix specify the relationship between the IS 2020.3

curriculum competences and the sections in this book.

Competency 1

Explain key infrastructure concepts, including how it functions, how to define

critical functions, and how to plan and manage infrastructure.

Topic Section in this book

Individual components of IT

infrastructure
2, 2.5

Functions of IT infrastructure All chapters 8, 9, 10, 11, 12, 13

Plan and manage IT infrastructure 14, 17, 18, 19, 20

Organizing structures and processes 14, 17, 18, 19, 20

Role of IT infrastructure in business 1.2, 2.6

130

Competency 2

Explain the principles of layered network architectures.

Topic Section in this book

Layers of the TCP/IP protocol suite 9.3.4.1, 9.3.5.1

Layers of the OSI model 9.3.1

Duties of each layer of TCP/IP protocol

suite

9.3.4.2, 9.3.4.3, 9.3.4.4,

9.3.4.5, 9.3.4.6, 9.3.5.2

Duties of each layer of OSI model Par 9.3.2 to 9.3.8

Network security 9.7

Competency 3

Explain the components of IT infrastructure solutions from client/server,

network hardware, (including wireless and wired).

Topic Section in this book

Components of a network 9.5.1, 9.5.2

Components of Client/server 2.3

Wired networks
9.3.2.1, 9.3.2.2, 9.3.2.3,

9.3.2.4, 9.3.3.2

Wireless protocols 9.3.3.3, 9.3.3.6

Competency 4

Explain the principles of network software and configuration.

Topic Section in this book

Configuration and setup processes on

network hardware, software and other

supporting devices and components

17

Four types of computer networks, LAN,

WAN, PAN, MAN
9.3.3.1

Network topologies: Mesh, Star, Bus,

Ring, Hybrid
9.2

131

Competency 5

Explain network protocols and their configuration.

Topic Section in this book

Transmission Control Protocol (TCP) 9.3.5.1

Internet Protocol (IP) 9.3.4.1, 9.3.4.2, 9.3.4.3

User Datagram Protocol (UDP) 9.3.5.1

Post office Protocol (POP) 9.3.8.5

Simple mail transport Protocol (SMTP) 9.3.8.6

File Transfer Protocol (FTP) 9.3.8.7

HyperText Transfer Protocol (HTTP) 9.3.8.8

HyperText Transfer Protocol Secure

(HTTPS)
9.3.8.8

Competency 6

Explain security principles as they pertain to networks.

Topic Section in this book

Basic forms of system attacks 7.3, 7.1.2, 7.1.3, 7.1.3, 7.2

Access control to computers and

networks
7.5.1.6

Techniques to make data secure 7.1.1, 9.7

Strengths and weaknesses of

passwords
7.5.1.6

Basic features of cryptography 7.5.1.7

Firewalls and types of firewall

protection
9.7.2

Techniques to secure wireless

communication
9.3.3.3

Advantages of a security policy 7.5.1.1

132

Competency 7

Examine and critique IT infrastructure for organizations.

Topic Section in this book

Infrastructure components All chapters 8, 9, 10, 11, 12, 13

Infrastructure planning 14, 17, 18, 19, 20

Continuity planning 5.4.5

Competency 8

Examine and critique IT server architecture (both physical or cloud-based).

Topic Section in this book

Server Components 11

Cloud configuration 3

Competency 9

Explain concepts of Enterprise Architecture.

Topic Section in this book

Foundations of TOGAF 18.2.1

Foundations of ITIL 18.2.2

SKIPPED TEXT

End notes

133

1 Box, G. E. P., and Draper, N. R., (1987), Empirical Model Building and

 Response Surfaces, John Wiley & Sons, New York, NY, p. 424

2 http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

3 I would like to thank Gregory Short, instructor at Purdue University – Fort

 Wayne for his help improving this formula. The original formula only worked
 for systems that all have the same availability percentage.

4 “Why Do Computers Stop and What Can Be Done About It?”, Tandem

 Computers technical report 85.7, June 1985

5 Source: https://berriprocess.com/en/bottleneck-law/

6 http://www.seagate.com/www-content/product-content/enterprise-

 performance-savvio-fam/enterprise-performance-15k-hdd/ent-perf-
 15k-5/en-gb/docs/enterprise-performance-15k-hdd-ds1797-3-1406gb.pdf

7 http://www.anandtech.com/show/6372/memory-performance-

 16gb-ddr31333-to-ddr32400-on-ivy-bridge-igp-with-gskill

8 http://www.extremetech.com/extreme/188776-how-l1-and-l2-cpu-caches-

 work-and-why-theyre-an-essential-part-of-modern-chips/2

9 https://www.cisecurity.org/cis-benchmarks/

10 Copyright: ddgenome
 Source: http://www.flickr.com/photos/ddgenome/3730193968/
 sizes/z/in/set-72157603633991423/

11 Source: https://www.akibia.com/how-big-is-a-google-

 data-center/#:~:text=The%20Google%20data%20
 center%20is,environmentally%20responsible%20
 and%20energy%2Defficient

12 Source: https://dgtlinfra.com/google-cloud-data-center-locations/

13 Source: https://commons.wikimedia.org/wiki/

 File:Google_Data_Center,_Council_Bluffs_Iowa_%2849062863796%29.jpg

14 Source: https://www.datacenterfrontier.com/design/

 article/11431484/inside-amazon8217s-cloud-computing-
 infrastructure

15 Copyright: F. Dominec

 Source: http://commons.wikimedia.org/wiki/File:Coaxial_cable_cut.jpg

16 Copyright: Clive Darra.

 Source: https://www.flickr.com/photos/osde-info/20943120629/

17 Updated using https://businessquant.com/seagate-average-hdd-

 capacity-worldwide and https://www.techtarget.com/searchstorage/
 feature/Hard-disk-drives-to-remain-dominant-storage-media

18 As published in Scientific American, July 2005

 http://www.scientificamerican.com/article/kryders-law/

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.flickr.com/photos/ddgenome/3730193968/%20%20%20sizes
http://www.flickr.com/photos/ddgenome/3730193968/%20%20%20sizes

134

19 Picture by Daniel Sancho.

 Source: https://www.flickr.com/photos/teclasorg/2852716477/

20 Public domain picture. Source: https://commons.wikimedia.org/

 wiki/File:ENIAC-changing_a_tube.jpg

21 Copyright: Robert van Jemimus

 Source: https://flic.kr/p/6SZom

22 Copyright: Robert van Jemimus

 Source: https://flic.kr/p/7zAdj

23 Definition by Wikipedia:

 https://en.wikipedia.org/wiki/Central_processing_unit

24 Source: http://www.hardwarezone.com.sg/

 feature-intel-xeon-5130-and-5160-2-way-smp-performance-review

25 Please read the excellent description on https://twitter.com/kenshirriff/

 status/1599120928050483207?s=61&t=nnNTht9oj5ALinG__JCNWg

26 Source: https://www.intel.com/content/www/us/en/

 newsroom/news/13th-gen-core-launch.html#gs.oqrxyp

27 Copyright: Luca Detomi

 Source: http://en.wikipedia.org/wiki/File:Intel_4004.jpg

28 Electronics, Volume 38, Number 8, April 19, 1965

 http://www.cs.utexas.edu/~pingali/CS395T/2013fa/
 papers/moorespaper.pdf

29 https://pubs.acs.org/doi/10.1021/j100785a001

30 According to http://wiki.midrange.com/index.php/OS/400_101

31 https://www.ibm.com/support/pages/node/668157

32 Andrew S. Tanenbaum. Operating Systems: Design and Implementation.

 Prentice-Hall, 1987, ISBN 0-13-637406-9

33 The original usenet post can be found here:

 https://groups.google.com/forum/#!topic/comp.os.minix/
 dlNtH7RRrGA[1-25]

34 Top500.org

35 Copyright: picture by ArnoldReinhold - Own work, CC BY-SA 3.0

 Source: https://commons.wikimedia.org/w/index.php?curid=31105488

36 Copyright: Ruben de Rijcke

 Source: http://commons.wikimedia.org/wiki/File:Ibm_pc_5150.jpg

37 https://gs.statcounter.com/os-market-share/

 desktop/worldwide/#monthly-202208-202209-bar

38 According to Samsung:

 http://www.storagevisions.com/2013/Book/Michael%20Willett.pdf

https://www.flickr.com/photos/teclasorg/2852716477/
https://twitter.com/kenshirriff/%20%20%20%20%20status/1599120928050483207
https://twitter.com/kenshirriff/%20%20%20%20%20status/1599120928050483207
https://groups.google.com/forum/#!topic/comp.os.minix/ dlNtH7RRrGA[1-25
https://groups.google.com/forum/#!topic/comp.os.minix/ dlNtH7RRrGA[1-25
http://www.storagevisions.com/2013/Book/Michael%20Willett.pdf

135

39 For a full description of the curriculum, see

 https://www.acm.org/binaries/content/assets/education/
 curricula-recommendations/is2020.pdf

